基于PSO-LSSVM算法的工业废气净化装置电源参数预测模型

荀倩, 王培良, 蔡志端. 基于PSO-LSSVM算法的工业废气净化装置电源参数预测模型[J]. 环境工程学报, 2016, 10(4): 1863-1868. doi: 10.12030/j.cjee.20160445
引用本文: 荀倩, 王培良, 蔡志端. 基于PSO-LSSVM算法的工业废气净化装置电源参数预测模型[J]. 环境工程学报, 2016, 10(4): 1863-1868. doi: 10.12030/j.cjee.20160445
Xun Qian, Wang Peiliang, Cai Zhiduan. Power parameter prediction model for industrial waste gas purification device based on PSO-LSSVM algorithm[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 1863-1868. doi: 10.12030/j.cjee.20160445
Citation: Xun Qian, Wang Peiliang, Cai Zhiduan. Power parameter prediction model for industrial waste gas purification device based on PSO-LSSVM algorithm[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 1863-1868. doi: 10.12030/j.cjee.20160445

基于PSO-LSSVM算法的工业废气净化装置电源参数预测模型

  • 基金项目:

    国家自然科学基金资助项目(61573137)

    浙江省公益性技术应用研究计划项目(2014C31091)

  • 中图分类号: X701.7

Power parameter prediction model for industrial waste gas purification device based on PSO-LSSVM algorithm

  • Fund Project:
  • 摘要: 为提高工业废气去除率与净化效率,针对传统净化装置中高频高压电源的输出电压幅值、频率参数不能随废气种类、流量和浓度进行在线调整而造成电能利用率降低的问题,提出一种基于PSO-LSSVM多元回归预测算法的工业废气净化装置电源参数预测模型。根据电源参数及其影响因素,将采集到的历史数据样本分为建模数据样本和实验数据样本,对废气净化装置的有关参数优化协调设置。为克服最小二乘支持向量机(LSSVM)对人为经验选择学习参数的依赖问题,采用粒子群优化算法(PSO)确定惩罚因子C和核函数参数σ2。结果表明,基于PSO-LSSVM的电源参数预测模型具有较高的精确度,可以真实反映电源参数随废气形式的变化。
  • 加载中
  • [1] 马竞涛,周则飞,吴祖成,等.低温等离子体处理恶臭 废气技术的工业应用研究.油技术与工程,2007,37(4):50-54 Ma Jingtao,Zhou Zefei,Wu Zucheng,et al.Study on commercial application of low-temperature plasma in treating fouling waste gas.Petroleum Refinery Engineering,2007,37(4):50-54(in Chinese)
    [2] 单志龙,刘兰辉,张迎胜,等.一种使用灰度预测模型的强自适应性移动节点定位算法.电子与信息学报,2014,36(6):1492-1497 Shan Zhilong,Liu Zhilan,Zhang Yingsheng,et al.A strong self-adaptivity localization algorithm based on gray prediction model for mobile nodes.Journal of Electronics & Information Technology,2014,36(6):1492-1497(in Chinese)
    [3] 段其昌,饶志波,黄大伟,等.基于EMD和PSO-SVM的电力系统中期负荷预测.控制工程,2012,19(5):913-917 Duan Qichang,Rao Zhibo,Huang Dawei,et al.Power system middle-term load forecasting based on EMD and SVM with PSO.Control Engineering of China,2012,19(5):913-917(in Chinese)
    [4] 王江荣.基于遗传算法模糊多元线性回归分析的瓦斯涌出量预测模型.工矿自动化,2013,39(12):34-38 Wang Jiangrong.Gas emission prediction model based on genetic algorithm and fuzzy multivariate linear regression analysis.Industry and Mine Automation,2013,39(12):34-3(in Chinese)
    [5] 王少军,刘琦,彭宇,等.CLS-SVM:一种时间序列预测的局部建模方法.仪器仪表学报,2011,32(8):1824-1829 Wang Shao,Liu Qi,Peng Yu,et al.CLS-SVM:A local modeling method for time series forecasting.Chinese Journal of Scientific Instrument,2011,32(8):1824-1829(in Chinese)
    [6] 梁栋,谢巧云,黄文江,等.最小二乘支持向量机用于时间序列叶面积指数预测.红外与激光工程,2014,43(1):243-248 Liang Dong,Xie Qiaoyun,Huang Wenjiang,et al.Using least squares support vector machines to estimate time series leaf area index.Infrared and Laser Engineering,2014,43(1):243-248(in Chinese)
    [7] 汤鸣.西安市工业废气排放总量的灰色预测模型.西安航空技术高等专科学校学报,2009,27(5):46-48 Tang Ming.Gray forecast module of total emission of industrial off-gas of Xi'an.Journal of Xi'an Aerotechnical College,2009,27(5):46-48(in Chinese)
    [8] 祝婕,袁新杰,马俊英,等.基于LMDI模型的乌鲁木齐工业废气排放影响因素研究.中国环境管理,2015,7(5):77-82 Zhu Jie,Yuan Xinjie,Ma Junying,et al.Research on factors of industrial waste gas emissions in Urumqi based on LMDI methods.Chinese Journal of Environmental Management,2015,7(5):77-82(in Chinese)
    [9] 张雪伍,蒋家超.基于GM-BP建模的城市工业废气排放量预测.常熟理工学院学报(自然科学),2014,28(2):107-111 Zhang Xuewu,Jiang Jiachao.Prediction of urban industrial emissions based on GM-BP neural network.Journal of Changshu Institute Technology (Natural Sciences),2014,28(2):107-111(in Chinese)
    [10] 何党联,崔虎,白文华.天然气净化厂LO-CAT装置参数优化及调整.石油化工,2014,33(9):118-121 He Danglian,Cui Hu,Bai Wenhua.Optimization and adjustment of parameters of LO-CAT device in natural gas purification plant.Petrochemical Industry Application,2014,33(9):118-121(in Chinese)
    [11] He Kang,Xu Qingsong,Jia Minping.Modeling and predicting surface roughness in hard turning using a Bayesian inference-based HMM-SVM model.IEEE Transactions on Automation Science and Engineering,2015,12(3):1092-1103
    [12] 代兴兰.遗传算法与最小二乘支持向量机在年径流预测中的应用.水资源与水工程学报,2014,25(6):231-235 Dai Xinglan.Application of genetic algorithm and least squares support vector machine in prediction of annual runoff.Journal of Water Resources Water Engineering,2014,25(6):231-235(in Chinese)
    [13] Sun Yongjun,Liu Yiwei,Liu Hong.Temperature compensation for a six-axis force/torque sensor based on the particle swarm optimization least square support vector machine for space manipulator.IEEE Sensors Journal,2015,16(3):798-805
    [14] Soeiro T.B.,Muhlethaler J.,Linner J.Automated design of a high-power high-frequency LCC resonant converter for electrostatic precipitators.Industrial Electronics,2013,60(11):4805-4819
  • 加载中
计量
  • 文章访问数:  2352
  • HTML全文浏览数:  1981
  • PDF下载数:  415
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-01-04
  • 刊出日期:  2016-04-15
荀倩, 王培良, 蔡志端. 基于PSO-LSSVM算法的工业废气净化装置电源参数预测模型[J]. 环境工程学报, 2016, 10(4): 1863-1868. doi: 10.12030/j.cjee.20160445
引用本文: 荀倩, 王培良, 蔡志端. 基于PSO-LSSVM算法的工业废气净化装置电源参数预测模型[J]. 环境工程学报, 2016, 10(4): 1863-1868. doi: 10.12030/j.cjee.20160445
Xun Qian, Wang Peiliang, Cai Zhiduan. Power parameter prediction model for industrial waste gas purification device based on PSO-LSSVM algorithm[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 1863-1868. doi: 10.12030/j.cjee.20160445
Citation: Xun Qian, Wang Peiliang, Cai Zhiduan. Power parameter prediction model for industrial waste gas purification device based on PSO-LSSVM algorithm[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 1863-1868. doi: 10.12030/j.cjee.20160445

基于PSO-LSSVM算法的工业废气净化装置电源参数预测模型

  • 1. 湖州师范学院工学院, 湖州 313000
基金项目:

国家自然科学基金资助项目(61573137)

浙江省公益性技术应用研究计划项目(2014C31091)

摘要: 为提高工业废气去除率与净化效率,针对传统净化装置中高频高压电源的输出电压幅值、频率参数不能随废气种类、流量和浓度进行在线调整而造成电能利用率降低的问题,提出一种基于PSO-LSSVM多元回归预测算法的工业废气净化装置电源参数预测模型。根据电源参数及其影响因素,将采集到的历史数据样本分为建模数据样本和实验数据样本,对废气净化装置的有关参数优化协调设置。为克服最小二乘支持向量机(LSSVM)对人为经验选择学习参数的依赖问题,采用粒子群优化算法(PSO)确定惩罚因子C和核函数参数σ2。结果表明,基于PSO-LSSVM的电源参数预测模型具有较高的精确度,可以真实反映电源参数随废气形式的变化。

English Abstract

参考文献 (14)

返回顶部

目录

/

返回文章
返回