紫外-氯顺序灭活地下水源水中真菌的效能

赵建超, 黄廷林, 文刚, 任崴, 朱红. 紫外-氯顺序灭活地下水源水中真菌的效能[J]. 环境工程学报, 2016, 10(12): 6867-6872. doi: 10.12030/j.cjee.201507178
引用本文: 赵建超, 黄廷林, 文刚, 任崴, 朱红. 紫外-氯顺序灭活地下水源水中真菌的效能[J]. 环境工程学报, 2016, 10(12): 6867-6872. doi: 10.12030/j.cjee.201507178
ZHAO Jianchao, HUANG Tinglin, WEN Gang, REN Wei, ZHU Hong. Sequential inactivation of fungi in drinking groundwater by UV and chlorine[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6867-6872. doi: 10.12030/j.cjee.201507178
Citation: ZHAO Jianchao, HUANG Tinglin, WEN Gang, REN Wei, ZHU Hong. Sequential inactivation of fungi in drinking groundwater by UV and chlorine[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6867-6872. doi: 10.12030/j.cjee.201507178

紫外-氯顺序灭活地下水源水中真菌的效能

  • 基金项目:

    国家自然科学基金资助项目(51678472)

    中国博士后基金资助项目(2015M580821,2016T90896)

    陕西省青年科技新星资助项目(2016KJXX-65)

  • 中图分类号: X523

Sequential inactivation of fungi in drinking groundwater by UV and chlorine

  • Fund Project:
  • 摘要: 以地下水源水中真菌为研究对象,研究了单独紫外线灭活、单独氯灭活以及紫外线-氯顺序灭活的灭菌效果,同时对单独消毒剂灭活进行了动力学研究,确定了其动力学参数。结果表明:单独紫外线灭活时,在相同紫外剂量(I·t)下,高紫外强度(I)下真菌的灭活效果优于低紫外强度的灭活效果;紫外线灭活符合一级光化学反应,其速率常数k为0.044~0.077 cm2·(mW·s)-1。单独氯灭活时,氯浓度2.0 mg·L-1,作用30 min,真菌灭活率达到95%;氯衰减符合一级衰减模型,即氯灭活真菌符合一级动力学反应,其速率常数k为0.056~0.081 L·(mg·s)-1。紫外线-氯顺序灭活时,高紫外剂量-低加氯量可以达到低紫外剂量-高加氯量的灭活效果;真菌完全灭活时,紫外剂量从5 mJ·cm-2增加到30 mJ·cm-2,加氯量可降低1~2 mg·L-1,减少了消毒副产物的生成量,降低了生态环境风险;紫外线与氯顺序灭活具有协同效应。
  • 加载中
  • [1] HAGESKAL G., LIMA N., SKAAR I. The study of fungi in drinking water. Mycological Research, 2009, 113(2):165-172
    [2] KANZLER D., BUZINA W., PAULITSCH A., et al. Occurrence and hygienic relevance of fungi in drinking water. Mycoses, 2008, 51(2):165-169
    [3] PEREIRA V. J., FERNANDES D., CARVALHO G., et al. Assessment of the presence and dynamics of fungi in drinking water sources using cultural and molecular methods. Water Research, 2010, 44(17):4850-4859
    [4] GRABIŃSKA-ŁONIEWSKA A., KONIŁŁOWICZ-KOWALSKA T., WARDZYŃSKA G., et al. Occurrence of fungi in water distribution system. Polish Journal of Environmental Studies, 2007, 16(4):539-547
    [5] METZGER W. J., PATTERSON R., FINK J., et al. Sauna-takers disease hypersensitivity pneumonitis due to contaminated water in a home sauna. The Journal of the American Medical Association, 1976, 236(19):2209-2211
    [6] HAGESKAL G., GAUSTAD P., HEIER B. T., et al. Occurrence of moulds in drinking water. Journal of Applied Microbiology, 2007, 102(3):774-780
    [7] PEREIRA V. J., MARQUES R., MARQUES M., et al. Free chlorine inactivation of fungi in drinking water sources. Water Research, 2013, 47(2):517-523
    [8] AL-GABR H. M., ZHENG Tianling, YU Xin. Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination. Science of the Total Environment, 2013, 463-464:525-529
    [9] 郭一飞, 朱新锋, 田艳兵. 饮用水消毒技术发展现状. 中国消毒学杂志, 2005, 22(2):215-216 GUO Yifei, ZHU Xinfeng, TIAN Yanbing. Development situation of drinking water disinfection technology. Chinese Journal of Disinfection, 2005, 22(2):215-216(in Chinese)
    [10] 张一清, 张永吉, 周玲玲. 紫外线及联合工艺对水中微生物的灭活效果. 中国给水排水, 2013, 29(16):20-23 ZHANG Yiqing, ZHANG Yongji, ZHOU Lingling. Inactivation of microorganisms in drinking water by ultraviolet irradiation and combined application process. China Water & Wastewater, 2013, 29(16):20-23(in Chinese)
    [11] OLIVEIRA B. R., CRESPO M. T. B., SAN ROMÃO M. V., et al. New insights concerning the occurrence of fungi in water sources and their potential pathogenicity. Water Research, 2013, 47(16):6338-6347
    [12] PEREIRA V. J., BASíLIO M. C., FERNANDES D., et al. Occurrence of filamentous fungi and yeasts in three different drinking water sources. Water Research, 2009, 43(15):3813-3819
    [13] RAHN R. O., STEFAN M. I., BOLTON J. R., et al. Quantum yield of the iodide-iodate chemical actinometer:Dependence on wavelength and concentration. Photochemistry and Photobiology, 2003, 78(2):146-152
    [14] 张永吉, 刘文君. 紫外线对自来水中微生物的灭活作用. 中国给水排水, 2005, 21(9):1-4 ZHANG Yongji, LIU Wenjun. Inactivation of microbe in drinking water using ultraviolet irradiation. China Water & Wastewater, 2005, 21(9):1-4(in Chinese)
    [15] 王云, 鲁巍, 张晓健. 氯及氯胺灭活大肠杆菌的消毒动力学模型. 环境科学, 2005, 26(5):100-104 WANG Yun, LU Wei, ZHANG Xiaojian. Modeling of inactivation kinetics of E. coli with free chlorine and monochloramine. Environmental Science, 2005, 26(5):100-104(in Chinese)
    [16] 张永吉, 刘文君, 张琳. 氯对紫外线灭活枯草芽孢杆菌的协同作用. 环境科学, 2006, 27(2):329-332 ZHANG Yongji, LIU Wenjun, ZHANG Lin. Synergistic disinfection of Bacillus subtilis spores by UV Irradiation and chlorine. Environmental Science, 2006, 27(2):329-332(in Chinese)
    [17] 国家环境保护总局. 水和废水监测分析方法.4版. 北京:中国环境科学出版社, 2002
    [18] PARKER J. A., DARBY J. L. Particle-associated coliform in secondary effluents:Shielding from ultraviolet light disinfection. Water Environment Research, 1995, 67(7):1065-1075
    [19] 张朋锋. 城市再生水消毒中试试验研究. 哈尔滨:哈尔滨工程大学硕士学位论文, 2011 ZHANG Pengfeng. Disinfection of reclaimed water in urban of pilot study. Harbin:Master Dissertation of Harbin Engineering University, 2011(in Chinese)
    [20] KOIVUNEN J., HEINONEN-TANSKI H. Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments. Water Research, 2005, 39(8):1519-1526
  • 加载中
计量
  • 文章访问数:  2472
  • HTML全文浏览数:  2051
  • PDF下载数:  382
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-08-21
  • 刊出日期:  2016-12-08
赵建超, 黄廷林, 文刚, 任崴, 朱红. 紫外-氯顺序灭活地下水源水中真菌的效能[J]. 环境工程学报, 2016, 10(12): 6867-6872. doi: 10.12030/j.cjee.201507178
引用本文: 赵建超, 黄廷林, 文刚, 任崴, 朱红. 紫外-氯顺序灭活地下水源水中真菌的效能[J]. 环境工程学报, 2016, 10(12): 6867-6872. doi: 10.12030/j.cjee.201507178
ZHAO Jianchao, HUANG Tinglin, WEN Gang, REN Wei, ZHU Hong. Sequential inactivation of fungi in drinking groundwater by UV and chlorine[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6867-6872. doi: 10.12030/j.cjee.201507178
Citation: ZHAO Jianchao, HUANG Tinglin, WEN Gang, REN Wei, ZHU Hong. Sequential inactivation of fungi in drinking groundwater by UV and chlorine[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6867-6872. doi: 10.12030/j.cjee.201507178

紫外-氯顺序灭活地下水源水中真菌的效能

  • 1. 西安建筑科技大学环境与市政工程学院, 西安 710055
基金项目:

国家自然科学基金资助项目(51678472)

中国博士后基金资助项目(2015M580821,2016T90896)

陕西省青年科技新星资助项目(2016KJXX-65)

摘要: 以地下水源水中真菌为研究对象,研究了单独紫外线灭活、单独氯灭活以及紫外线-氯顺序灭活的灭菌效果,同时对单独消毒剂灭活进行了动力学研究,确定了其动力学参数。结果表明:单独紫外线灭活时,在相同紫外剂量(I·t)下,高紫外强度(I)下真菌的灭活效果优于低紫外强度的灭活效果;紫外线灭活符合一级光化学反应,其速率常数k为0.044~0.077 cm2·(mW·s)-1。单独氯灭活时,氯浓度2.0 mg·L-1,作用30 min,真菌灭活率达到95%;氯衰减符合一级衰减模型,即氯灭活真菌符合一级动力学反应,其速率常数k为0.056~0.081 L·(mg·s)-1。紫外线-氯顺序灭活时,高紫外剂量-低加氯量可以达到低紫外剂量-高加氯量的灭活效果;真菌完全灭活时,紫外剂量从5 mJ·cm-2增加到30 mJ·cm-2,加氯量可降低1~2 mg·L-1,减少了消毒副产物的生成量,降低了生态环境风险;紫外线与氯顺序灭活具有协同效应。

English Abstract

参考文献 (20)

返回顶部

目录

/

返回文章
返回