三价铁改性活性炭对水中微量砷的吸附特性

曹秉帝, 徐绪筝, 王东升, 徐文博, 王新, 曹晨. 三价铁改性活性炭对水中微量砷的吸附特性[J]. 环境工程学报, 2016, 10(5): 2321-2328. doi: 10.12030/j.cjee.201412168
引用本文: 曹秉帝, 徐绪筝, 王东升, 徐文博, 王新, 曹晨. 三价铁改性活性炭对水中微量砷的吸附特性[J]. 环境工程学报, 2016, 10(5): 2321-2328. doi: 10.12030/j.cjee.201412168
Cao Bingdi, Xu Xuzheng, Wang Dongsheng, Xu Wenbo, Wang Xin, Cao Chen. Adsorption properties of low concentration arsenic in water by modified activated carbon with ferric iron[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2321-2328. doi: 10.12030/j.cjee.201412168
Citation: Cao Bingdi, Xu Xuzheng, Wang Dongsheng, Xu Wenbo, Wang Xin, Cao Chen. Adsorption properties of low concentration arsenic in water by modified activated carbon with ferric iron[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2321-2328. doi: 10.12030/j.cjee.201412168

三价铁改性活性炭对水中微量砷的吸附特性

  • 基金项目:

    国家水体污染控制与治理科技重大专项(2011ZX07415-001)

    国家高技术研究发展计划(863)项目(2013AA065602)

  • 中图分类号: X703

Adsorption properties of low concentration arsenic in water by modified activated carbon with ferric iron

  • Fund Project:
  • 摘要: 研究了三价铁改性对不同活性炭(颗粒和粉末)对水中砷的吸附特性的影响。结果表明,三价铁改性有效提高了活性炭对不同形态砷的吸附性能。其中,对于2种活性炭,As(Ⅲ)和As(Ⅴ)的最佳铁离子改性浓度分别为0.1和0.05 mol/L。此时,通过Langmuir等温线方程拟合得到:粉末和颗粒活性炭对As(Ⅲ)的最大吸附量qm分别为2.38 mg/g和9.39 mg/g;而对As(Ⅴ)的qm分别为5.12 mg/g和2.32 mg/g。此外,当溶液的pH从3升高到9的过程中,吸附量先增加后有所下降,当pH 为7时,改性前后的活性炭对砷的吸附量达到最高。
  • 加载中
  • [1] 杨洁, 顾海红, 赵浩, 等. 含砷废水处理技术研究进展. 工业水处理, 2003, 23(6): 14-18 Yang Jie, Gu Haihong, Zhao Hao, et al. Review of arsenic-contaminated waste water treatment. Industrial Water Treatment, 2003, 23(6): 14-18(in Chinese)
    [2] Xu Yanhua, Nakajima T., Ohki A. Adsorption and removal of arsenic (Ⅴ) from drinking water by aluminum-loaded Shirasu-zeolite. Journal of Hazardous Materials, 2002, 92(3): 275-287
    [3] Han Binbing, Runnells T., Zimbron J., et al. Arsenic removal from drinking water by flocculation and microfiltration. Desalination, 2002, 145(1-3): 293-298
    [4] De Lourdes Ballinas M., De San Miguel E. R., Teresa De Jesüs Rodríguez M., et al. Arsenic (Ⅴ) removal with polymer inclusion membranes from sulfuric acid media using DBBP as carrier. Environmental Science & Technology, 2004, 38(3): 886-891
    [5] Kim J., Benjamin M. M. Modeling a novel ion exchange process for arsenic and nitrate removal. Water Research, 2004, 38(8): 2053-2062
    [6] Baciocchi R., Chiavola A., Gavasci R. Ion exchange equilibria of arsenic in the presence of high sulphate and nitrate concentrations. Water Science & Technology: Water Supply, 2005, 5(5): 67-74
    [7] 刘瑞霞, 王亚雄, 汤鸿霄. 新型离子交换纤维去除水中砷酸根离子的研究. 环境科学, 2002, 23(5): 88-91 Liu Ruixia, Wang Yaxiong, Tang Hongxiao. Removal of arsenate by a new type of ion exchange fiber. Environmental Science, 2002, 23(5): 88-91(in Chinese)
    [8] Hering J. G., Chen Penyuan, Wilkie J. A., et al. Arsenic removal from drinking water during coagulation. Journal of Environmental Engineering, 1997, 123(8): 800-807
    [9] Borho M., Wilderer P. Optimized removal of arsenate (Ⅲ) by adaptation of oxidation and precipitation processes to the filtration step. Water Science and Technology, 1996, 34(9): 25-31
    [10] 苑宝玲, 李坤林, 邓临莉, 等. 多功能高铁酸盐去除饮用水中砷的研究. 环境科学, 2006, 27(2): 281-284 Yuan Baoling, Li Kunlin, Deng Linli, et al. Removal of arsenic (Ⅲ) by ferrate oxidation-coagulation from drinking water. Environmental Science, 2006, 27(2): 281-284(in Chinese)
    [11] Khalid N., Ahmad S., Toheed A., et al. Immobilization of arsenic on rice husk. Adsorption Science and Technology, 1998, 16(8): 655-666
    [12] 袁涛, 罗启芳. 运用涂铁砂粒进行分散式饮水除砷的效果. 环境科学, 2001, 22(3): 25-29 Yuan Tao, Luo Qifang. Removal of arsenic from dispersed drinking water by iron oxide-coated sand. Environmental Science, 2001, 22(3): 25-29(in Chinese)
    [13] Zhang Gaosheng, Qu Jiuhui, Liu Huijuan, et al. Removal mechanism of As (Ⅲ) by a novel Fe-Mn binary oxide adsorbent: Oxidation and sorption. Environmental Science & Technology, 2007, 41(13): 4613-4619
    [14] Waychunas G. A., Davis J. A., Fuller C. C. Geometry of sorbed arsenate on ferrihydrite and crystalline FeOOH: Re-evaluation of EXAFS results and topological factors in predicting sorbate geometry, and evidence for monodentate complexes. Geochimica et Cosmochimica Acta, 1995, 59(17): 3655-3661
    [15] Gupta V. K., Saini V. K., Jain N. Adsorption of As (Ⅲ) from aqueous solutions by iron oxide-coated sand. Journal of Colloid and Interface Science, 2005, 288(1): 55-60
    [16] Payne K. B., Abel-Fattah T. M. Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: Effects of pH, temperature, and ionic strength. Journal of Environmental Science and Health, 2005, 40(4): 723-749
    [17] 姚淑华, 贾永锋, 汪国庆, 等. 活性炭负载Fe(Ⅲ)吸附剂去除饮用水中的As(Ⅴ). 过程工程学报, 2009, 9(2): 250-256 Yao Shuhua, Jia Yongfeng, Wang Guoqing, et al. Removal of As(Ⅴ) from drinking water by activated carbon loaded with Fe(Ⅲ) adsorbent. The Chinese Journal of Process Engineering, 2009, 9(2): 250-256(in Chinese)
  • 加载中
计量
  • 文章访问数:  2258
  • HTML全文浏览数:  1885
  • PDF下载数:  368
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-03-31
  • 刊出日期:  2016-06-03
曹秉帝, 徐绪筝, 王东升, 徐文博, 王新, 曹晨. 三价铁改性活性炭对水中微量砷的吸附特性[J]. 环境工程学报, 2016, 10(5): 2321-2328. doi: 10.12030/j.cjee.201412168
引用本文: 曹秉帝, 徐绪筝, 王东升, 徐文博, 王新, 曹晨. 三价铁改性活性炭对水中微量砷的吸附特性[J]. 环境工程学报, 2016, 10(5): 2321-2328. doi: 10.12030/j.cjee.201412168
Cao Bingdi, Xu Xuzheng, Wang Dongsheng, Xu Wenbo, Wang Xin, Cao Chen. Adsorption properties of low concentration arsenic in water by modified activated carbon with ferric iron[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2321-2328. doi: 10.12030/j.cjee.201412168
Citation: Cao Bingdi, Xu Xuzheng, Wang Dongsheng, Xu Wenbo, Wang Xin, Cao Chen. Adsorption properties of low concentration arsenic in water by modified activated carbon with ferric iron[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2321-2328. doi: 10.12030/j.cjee.201412168

三价铁改性活性炭对水中微量砷的吸附特性

  • 1.  西安建筑科技大学市政与环境工程学院, 西安 710055
  • 2.  中国科学院生态环境研究中心, 环境水质学国家重点 实验室, 北京 100085
  • 3.  北京环球中科水务科技有限公司, 北京 100085
  • 4.  中国航天建设集团有限公司, 北京 100071
基金项目:

国家水体污染控制与治理科技重大专项(2011ZX07415-001)

国家高技术研究发展计划(863)项目(2013AA065602)

摘要: 研究了三价铁改性对不同活性炭(颗粒和粉末)对水中砷的吸附特性的影响。结果表明,三价铁改性有效提高了活性炭对不同形态砷的吸附性能。其中,对于2种活性炭,As(Ⅲ)和As(Ⅴ)的最佳铁离子改性浓度分别为0.1和0.05 mol/L。此时,通过Langmuir等温线方程拟合得到:粉末和颗粒活性炭对As(Ⅲ)的最大吸附量qm分别为2.38 mg/g和9.39 mg/g;而对As(Ⅴ)的qm分别为5.12 mg/g和2.32 mg/g。此外,当溶液的pH从3升高到9的过程中,吸附量先增加后有所下降,当pH 为7时,改性前后的活性炭对砷的吸附量达到最高。

English Abstract

参考文献 (17)

返回顶部

目录

/

返回文章
返回