臭氧活性炭-后置砂滤工艺对水中农药的控制效能

张振秀, 杨凯, 于建伟, 李辉, 杨敏, 何小清, 卢宁, 张东, 孙志远, 武骁. 臭氧活性炭-后置砂滤工艺对水中农药的控制效能[J]. 环境工程学报, 2016, 10(5): 2315-2320. doi: 10.12030/j.cjee.201412179
引用本文: 张振秀, 杨凯, 于建伟, 李辉, 杨敏, 何小清, 卢宁, 张东, 孙志远, 武骁. 臭氧活性炭-后置砂滤工艺对水中农药的控制效能[J]. 环境工程学报, 2016, 10(5): 2315-2320. doi: 10.12030/j.cjee.201412179
Zhang Zhenxiu, Yang Kai, Yu Jianwei, Li Hui, Yang Min, He Xiaoqing, Lu Ning, Zhang Dong, Sun Zhiyuan, Wu Xiao. Pesticides removal evaluation for O3/BAC with post filtration process in drinking water[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2315-2320. doi: 10.12030/j.cjee.201412179
Citation: Zhang Zhenxiu, Yang Kai, Yu Jianwei, Li Hui, Yang Min, He Xiaoqing, Lu Ning, Zhang Dong, Sun Zhiyuan, Wu Xiao. Pesticides removal evaluation for O3/BAC with post filtration process in drinking water[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2315-2320. doi: 10.12030/j.cjee.201412179

臭氧活性炭-后置砂滤工艺对水中农药的控制效能

  • 基金项目:

    国家水体污染控制与治理科技重大专项(2012ZX07403-002)

    中国科学院生态环境研究中心"一三五"项目(YSW2013A02)

  • 中图分类号: X703

Pesticides removal evaluation for O3/BAC with post filtration process in drinking water

  • Fund Project:
  • 摘要: 选择我国饮用水水质标准中有相关规定,以及部分用量较大或虽被禁用但仍有残留的农药共25种,对黄浦江水源水以及采用臭氧活性炭-后置砂滤工艺的某水厂工艺段出水中的浓度分布进行了调查,评估了砂滤后置工艺条件下相应农药的实际处理效果。结果表明:原水中有包括莠去津、乐果、六氯苯、敌敌畏、乙草胺、丁草胺、仲丁威和p,p'-DDT的8种农药检出,且总浓度较高达到760 ng/L,其中莠去津和乙草胺含量较高,最高浓度分别达到531 ng/L和277 ng/L;从季节性分布来看,春季总农药浓度最高达760 ng/L,秋季最低为175 ng/L。从工艺去除效果来看,臭氧活性炭砂滤后置工艺对农药的总体去除率为62%~78%,与冬春季相比,夏秋季节的农药的去除率提高约10%左右,这可能与高温期微生物活性较高有关。值得关注的是,砂滤后置工艺与同期常规臭氧活性炭工艺相比农药的总去除率要低10%左右,应结合总体出水水质情况对其进一步评估。
  • 加载中
  • [1] World Health Organization. Guidelines for Drinking-Water Quality (4th ed.). Geneva: World Health Organization, 2011
    [2] U.S. EPA. National Primary Drinking Water Regulations. 2009
    [3] Hua Wenyi, Bennett E. R., Letcher R. J. Ozone treatment and the depletion of detectable pharmaceuticals and atrazine herbicide in drinking water sourced from the upper Detroit River, Ontario, Canada. Water Research, 2006, 40(12): 2259-2266
    [4] 马晓雁, 高乃云, 李青松, 等. 黄浦江原水及水处理过程中内分泌干扰物状况调查. 中国给水排水, 2006, 22(19): 1-4 Ma Xiaoyan, Gao Naiyun, Li Qingsong, et al. Investigation of several endocrine disrupting chemicals in Huangpu river and water treatment units of a waterworks. China Water & Wastewater, 2006, 22(19): 1-4(in Chinese)
    [5] Yang Hongjun, Shen Zhemin, Zhang Jinping, et al. Water quality characteristics along the course of the Huangpu River (China). Journal of Environmental Sciences, 2007, 19(10): 1193-1198
    [6] Wang Yongjing, Yu Jianwei, Zhang Dong, et al. Addition of hydrogen peroxide for the simultaneous control of bromate and odor during advanced drinking water treatment using ozone. Journal of Environmental Sciences, 2014, 26(3): 550-554
    [7] 夏凡, 胡胸星, 韩忠豪, 等. 黄浦江表层水体中有机氯农药的分布特征. 环境科学研究, 2006, 19(2): 11-15 Xia Fan, Hu Xiongxing, Han Zhonghao, et al. Distribution characteristics of organochlorine pesticides in surface water from the Huangpu River. Research of Environmental Sciences, 2006, 19(2): 11-15(in Chinese)
    [8] Wu Minghong, Wang Liang, Xu Gang, et al. Seasonal and spatial distribution of 4-tert-octylphenol, 4-nonylphenol and bisphenol A in the Huangpu River and its tributaries, Shanghai, China. Environmental Monitoring and Assessment, 2013, 185(4): 3149-3161
    [9] Xu Bin, Gao Naiyun, Sun Xiaofeng, et al. Characteristics of organic material in Huangpu River and treatability with the O3-BAC process. Separation and Purification Technology, 2007, 57(2): 348-355
    [10] Song Yali, Dong Bingzhi, Gao Naiyun, et al. Huangpu River water treatment by microfiltration with ozone pretreatment. Desalination, 2010, 250(1): 71-75
    [11] 中华人民共和国卫生部. GB 5749-2006. 生活饮用水卫生标准. 北京: 中国标准出版社, 2006
    [12] Battaglin A. W., Hay L. E. Effects of sampling strategies on estimates of annual mean herbicide concentrations in Midwestern Rivers. Environmental Science & Technology, 1996, 30(3): 889-896
    [13] 邵志昌, 陆少鸣, 廖伟, 等. 针对O3-BAC工艺生物泄露问题后置砂滤池级配研究. 水处理技术, 2012, 38(3): 111-113 Shao Zhichang, Lu Shaoming, Liao Wei, et al. Study on the grading of rear-set sand filtration for the problem of microorganism leak in O3-BAC process. Technology of Water Treatment, 2012, 38(3): 111-113(in Chinese)
    [14] Lu Shaoming, Shao Zhichang, Zhong Gaohui, et al. BAC filtration-disinfection-sand filtration combination technology for handling risk of microorganism leak in O3-BAC process//Proceedings of International Conference on Multimedia Technology. Hangzhou: IEEE, 2011: 3870-3875
    [15] 于志勇. 我国重点城市饮用水和食用鱼中农药的污染特征及健康风险评价. 北京: 中国科学院研究生院博士学位论文, 2011 Yu Zhiyong. Characteristics of occurrence and health risk assessment of pesticides in drinking water and fish of China's major cities. Beijing: Doctor Dissertation of University of Chinese Academy of Sciences, 2011(in Chinese)
    [16] 王鹤. 生物活性炭去除水中酰胺类除草剂效能研究. 哈尔滨: 哈尔滨工业大学博士学位论文, 2013 Wang He. Research on removal efficiency of acetanilide herbicides in water by biological activated carbon. Harbin: Doctor Dissertation of Harbin Institute of Technology, 2013(in Chinese)
    [17] 张晓平, 李文浩, 朱斌, 等. 不同构型活性炭滤池微生物分布特征与运行效能. 中国给水排水, 2013, 29(5): 24-27 Zhang Xiaoping, Li Wenhao, Zhu Bin, et al. Microbial distribution and performance in different types of activated carbon filters. China Water & Wastewater, 2013, 29(5): 24-27(in Chinese)
    [18] Kumar S., Mukerji K. G., Lal R. Molecular aspects of pesticide degradation by microorganisms. Critical Reviews in Microbiology, 1996, 22(1): 1-26
    [19] Yang Shidong, Liao Luhua, Liu Zhidong. Effect of temperature and the altitude of filler on biological activated carbon performance. Applied Mechanics and Materials, 2014, 621: 13-18
    [20] Ronan Treguer, Romuald Tatin, Annabelle Couvert. Ozonation effect on natural organic matter adsorption and biodegradation: Application to a membrane bioreactor containing activated carbon for drinking water production. Water Research, 2010, 44(3): 781-788
  • 加载中
计量
  • 文章访问数:  1943
  • HTML全文浏览数:  1674
  • PDF下载数:  776
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-02-24
  • 刊出日期:  2016-06-03
张振秀, 杨凯, 于建伟, 李辉, 杨敏, 何小清, 卢宁, 张东, 孙志远, 武骁. 臭氧活性炭-后置砂滤工艺对水中农药的控制效能[J]. 环境工程学报, 2016, 10(5): 2315-2320. doi: 10.12030/j.cjee.201412179
引用本文: 张振秀, 杨凯, 于建伟, 李辉, 杨敏, 何小清, 卢宁, 张东, 孙志远, 武骁. 臭氧活性炭-后置砂滤工艺对水中农药的控制效能[J]. 环境工程学报, 2016, 10(5): 2315-2320. doi: 10.12030/j.cjee.201412179
Zhang Zhenxiu, Yang Kai, Yu Jianwei, Li Hui, Yang Min, He Xiaoqing, Lu Ning, Zhang Dong, Sun Zhiyuan, Wu Xiao. Pesticides removal evaluation for O3/BAC with post filtration process in drinking water[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2315-2320. doi: 10.12030/j.cjee.201412179
Citation: Zhang Zhenxiu, Yang Kai, Yu Jianwei, Li Hui, Yang Min, He Xiaoqing, Lu Ning, Zhang Dong, Sun Zhiyuan, Wu Xiao. Pesticides removal evaluation for O3/BAC with post filtration process in drinking water[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2315-2320. doi: 10.12030/j.cjee.201412179

臭氧活性炭-后置砂滤工艺对水中农药的控制效能

  • 1.  华东理工大学环境科学与工程系, 上海 200237
  • 2.  中国科学院生态环境研究中心中国科学院饮用水 科学与技术重点实验室, 北京 100085
  • 3.  上海城市水资源开发利用国家工程中心有限公司, 上海 200086
基金项目:

国家水体污染控制与治理科技重大专项(2012ZX07403-002)

中国科学院生态环境研究中心"一三五"项目(YSW2013A02)

摘要: 选择我国饮用水水质标准中有相关规定,以及部分用量较大或虽被禁用但仍有残留的农药共25种,对黄浦江水源水以及采用臭氧活性炭-后置砂滤工艺的某水厂工艺段出水中的浓度分布进行了调查,评估了砂滤后置工艺条件下相应农药的实际处理效果。结果表明:原水中有包括莠去津、乐果、六氯苯、敌敌畏、乙草胺、丁草胺、仲丁威和p,p'-DDT的8种农药检出,且总浓度较高达到760 ng/L,其中莠去津和乙草胺含量较高,最高浓度分别达到531 ng/L和277 ng/L;从季节性分布来看,春季总农药浓度最高达760 ng/L,秋季最低为175 ng/L。从工艺去除效果来看,臭氧活性炭砂滤后置工艺对农药的总体去除率为62%~78%,与冬春季相比,夏秋季节的农药的去除率提高约10%左右,这可能与高温期微生物活性较高有关。值得关注的是,砂滤后置工艺与同期常规臭氧活性炭工艺相比农药的总去除率要低10%左右,应结合总体出水水质情况对其进一步评估。

English Abstract

参考文献 (20)

返回顶部

目录

/

返回文章
返回