电化学氧化与生物法联合降解木质素的影响因素

崔晓敏, 梁继东, 霍欣, 王述梁. 电化学氧化与生物法联合降解木质素的影响因素[J]. 环境工程学报, 2016, 10(5): 2407-2412. doi: 10.12030/j.cjee.201412150
引用本文: 崔晓敏, 梁继东, 霍欣, 王述梁. 电化学氧化与生物法联合降解木质素的影响因素[J]. 环境工程学报, 2016, 10(5): 2407-2412. doi: 10.12030/j.cjee.201412150
Cui Xiaomin, Liang Jidong, Huo Xin, Wang Shuliang. Influencing factors of lignin degradation by combination of electrochemical oxidation and biodegradation[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2407-2412. doi: 10.12030/j.cjee.201412150
Citation: Cui Xiaomin, Liang Jidong, Huo Xin, Wang Shuliang. Influencing factors of lignin degradation by combination of electrochemical oxidation and biodegradation[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2407-2412. doi: 10.12030/j.cjee.201412150

电化学氧化与生物法联合降解木质素的影响因素

  • 基金项目:

    陕西省科技统筹创新工程项目(2011KTZB03-03-01)

    陕西省自然科学基金资助项目(2015JQ2052)

  • 中图分类号: X592

Influencing factors of lignin degradation by combination of electrochemical oxidation and biodegradation

  • Fund Project:
  • 摘要: 采用高效的电化学氧化技术联合低成本的生物降解技术,进行了木质素的降解探索。考察了电流密度、电量、初始pH和电解质浓度对木质素降解效果的影响,结果表明,电流密度和电量影响显著,而初始pH和电解质浓度的影响较小。经过综合比较,得到电化学与生物联合降解木质素的最佳反应条件为:电流密度为5.0 mA/cm2;电量为20 kC;初始pH为7;电解质浓度为0.1 mol/L。在此条件下,碱木质素和木质素磺酸钠的COD去除率分别达到65.97%和59.31%,表征木质素酚羟基结构的UV280分别降低了65.97%和59.77%,色度去除率分别为74.15%和58.32%。总之,电化学前处理可破坏木质素的关键结构,提高木质素的可生化性,从而促进加快后续生物降解。
  • 加载中
  • [1] Akin D. E., Benner R. Degradation of polysaccharides and lignin by ruminal bacteria and fungi. Applied and Environmental Microbiology, 1988, 54(5): 1117-1125
    [2] 冷东梅. 造纸黑液木质素资源化处理. 化学工程与装备, 2009(12): 164-167 Leng Dongmei. The recycling of the paper-making black liquor lignin. Chemical Engineering & Equipment, 2009(12): 164-167(in Chinese)
    [3] 李宝义. 造纸废水处理技术分析与研究进展. 广东化工, 2011, 38(5): 182-183 Li Baoyi. Analysis and research development of paper-making wastewater treatment technologies. Guangdong Chemical Industry, 2011, 38(5): 182-183(in Chinese)
    [4] Wang Dongqi, He Yanling, Liang Jidong, et al. Distribution and source analysis of aluminum in rivers near Xi'an city, China. Environmental Monitoring and Assessment, 2013, 185(2): 1041-1053
    [5] Anglada á., Urtiaga A., Ortiz I. Contributions of electrochemical oxidation to waste-water treatment: Fundamentals and review of applications. Journal of Chemical Technology and Biotechnology, 2009, 84(12): 1747-1755
    [6] 周明华, 吴祖成, 汪大翚. 电化学高级氧化工艺降解有毒难生化有机废水. 化学反应工程与工艺, 2001, 17(3): 263-271 Zhou Minghua, Wu Zucheng, Wang Dahui. Advanced electrochemical oxidation processes for treatment of toxic and biorefractory organic wastewater. Chemical Reaction Engineering and Technology, 2001, 17(3): 263-271(in Chinese)
    [7] Martínez-Huitle C. A., Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chemical Society Reviews, 2006, 35(12): 1324-1340
    [8] Pelegrini R., Reyes J., Durán N., et al. Photoelectrochemical degradation of lignin. Journal of Applied Electrochemistry, 2000, 30(8): 953-958
    [9] 王志江, 黄初升, 陈希慧, 等. PbO2和SnO2电极电氧化纸业废水中木质素褪色和降解效果的研究. 广西师范学院学报(自然科学版), 2003, 20(4): 53-56 Wang Zhijiang, Huang Chusheng, Chen Xihui, et al. Electro-otidative decolorization and degradation effect of lignin over PbO2 and SnO2 electrodes in making-paper waste water. Journal of Guangxi Teachers College (Natural Science Edition), 2003, 20(4): 53-56(in Chinese)
    [10] Tolba R., Tian Min, Wen Jiali, et al. Electrochemical oxidation of lignin at IrO2-based oxide electrodes. Journal of Electroanalytical Chemistry, 2010, 649(1-2): 9-15
    [11] Tian Min, Wen Jiali, MacDonald D., et al. A novel approach for lignin modification and degradation. Electrochemistry Communications, 2010, 12(4): 527-530
    [12] Yang Xiupei, Zou Ruyi, Huo Feng, et al. Preparation and characterization of Ti/SnO2-Sb2O3-Nb2O5/PbO2 thin film as electrode material for the degradation of phenol. Journal of Hazardous Materials, 2009, 164(1): 367-373
    [13] Shao Dan, Liang Jidong, Cui Xiaomin, et al. Electrochemical oxidation of lignin by two typical electrodes: Ti/Sb-SnO2 and Ti/PbO2. Chemical Engineering Journal, 2014, 244: 288-295
    [14] Liu Zhongxuan, Liang Jidong, Du Wenjing, et al. Study on the aerobic biodegradation of lignin by activated sludge reactor//Proceedings of International Symposium on Water Resource and Environmental Protection. Xi'an, China: IEEE, 2011: 1999-2002
    [15] Wang Dongqi, Lin Yishan, Du Wenjing, et al. Optimization and characterization of lignosulfonate biodegradation process by a bacterial strain Sphingobacterium sp. HY-H. International Biodeterioration & Biodegradation, 2013, 85: 365-371
    [16] Duan Jing, Liang Jidong, Du Wenjing, et al. Biodegradation of kraft lignin by a bacterial strain Sphingobacterium sp. HY-H. Advanced Materials Research, 2014, 955-959: 548-553
    [17] Rabaaoui N., Moussaoui Y., Allagui M. S., et al. Anodic oxidation of nitrobenzene on BDD electrode: Variable effects and mechanisms of degradation. Separation and Purification Technology, 2013, 107: 318-323
    [18] Choi J. Y., Lee Y. J., Shin J., et al. Anodic oxidation of 1, 4-dioxane on boron-doped diamond electrodes for wastewater treatment. Journal of Hazardous Materials, 2010, 179(1-3): 762-768
    [19] Gierer J., Lindeberg O. Reactions of lignin during sulfate pulping. Part XIX. Isolation and identification of new dimers from a spent sulfate liquor. Acta Chemica Scandinavica B, 1980, 34: 161-170
  • 加载中
计量
  • 文章访问数:  1632
  • HTML全文浏览数:  1285
  • PDF下载数:  481
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-01-25
  • 刊出日期:  2016-06-03

电化学氧化与生物法联合降解木质素的影响因素

  • 1. 西安交通大学能源与动力工程学院环境科学与工程系, 西安 710049
  • 2. 北京中科联合环境科技有限公司, 北京 100870
基金项目:

陕西省科技统筹创新工程项目(2011KTZB03-03-01)

陕西省自然科学基金资助项目(2015JQ2052)

摘要: 采用高效的电化学氧化技术联合低成本的生物降解技术,进行了木质素的降解探索。考察了电流密度、电量、初始pH和电解质浓度对木质素降解效果的影响,结果表明,电流密度和电量影响显著,而初始pH和电解质浓度的影响较小。经过综合比较,得到电化学与生物联合降解木质素的最佳反应条件为:电流密度为5.0 mA/cm2;电量为20 kC;初始pH为7;电解质浓度为0.1 mol/L。在此条件下,碱木质素和木质素磺酸钠的COD去除率分别达到65.97%和59.31%,表征木质素酚羟基结构的UV280分别降低了65.97%和59.77%,色度去除率分别为74.15%和58.32%。总之,电化学前处理可破坏木质素的关键结构,提高木质素的可生化性,从而促进加快后续生物降解。

English Abstract

参考文献 (19)

目录

/

返回文章
返回