零价铁与甲醇支持的生物-化学法去除富氧水中的硝酸盐氮

黄国鑫, 刘菲, 黄园英, 王晓宏, 邹静, 时满. 零价铁与甲醇支持的生物-化学法去除富氧水中的硝酸盐氮[J]. 环境工程学报, 2014, 8(10): 4254-4260.
引用本文: 黄国鑫, 刘菲, 黄园英, 王晓宏, 邹静, 时满. 零价铁与甲醇支持的生物-化学法去除富氧水中的硝酸盐氮[J]. 环境工程学报, 2014, 8(10): 4254-4260.
Huang Guoxin, Liu Fei, Huang Yuanying, Wang Xiaohong, Zou Jing, Shi Man. Nitrate-nitrogen removal from oxygen rich water by a combined biological-chemical approach supported by zero-valent iron and methanol[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4254-4260.
Citation: Huang Guoxin, Liu Fei, Huang Yuanying, Wang Xiaohong, Zou Jing, Shi Man. Nitrate-nitrogen removal from oxygen rich water by a combined biological-chemical approach supported by zero-valent iron and methanol[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4254-4260.

零价铁与甲醇支持的生物-化学法去除富氧水中的硝酸盐氮

  • 基金项目:

    中国地质调查局项目(1212011121171)

    国家国际科技合作项目(0102010DFA92800)

    北京市优秀人才培养资助项目(2012D001055000001)

    中国博士后科学基金面上项目(2013M541111)

  • 中图分类号: X523

Nitrate-nitrogen removal from oxygen rich water by a combined biological-chemical approach supported by zero-valent iron and methanol

  • Fund Project:
  • 摘要: 针对富氧水中硝酸盐氮(NO3--N),采用零价铁(ZVI)和甲醇支持的生物-化学联合法开展了批实验研究,探讨了ZVI类型、CH3OH:N比、初始溶解氧(DO)浓度、初始NO3--N浓度和水温等5个因素对联合法除氧脱氮效果的影响。结果表明,ZVI的除氧能力由高至低依次为:ZVI-C(0.124 d)>ZVI-A(0.141 d)>ZVI-B(0.179 d)。ZVI支持的联合法NO3--N去除率由高至低依次为:ZVI-A(99.6%)>ZVI-C(95.3%)>ZVI-B(92.2%)。CH3OH:N≤3.5:1时,联合法去除3--N;CH3OH:N=10:1时,去除100%的NO3--N;CH3OH:N=200:1时,去除70.2%的NO3--N。当初始DO浓度介于3.6~5.3 mg/L之间时,联合法的NO3--N去除率介于98.8%~99.6%之间。在任意时刻,低底物浓度(5.2 mg/L)时的NO3--N去除率低于高浓度(21.1 mg/L)时的去除率;低底物浓度下完全脱氮所需时间比高浓度下长2 d。15.0℃时联合法需要7 d可以达到完全脱氮,然而在27.5℃时则需要5 d。低温时亚硝酸盐氮浓度最大值(4.4 mg/L)显著高于高温时的最大值(1.1 mg/L)。ZVI类型、CH3OH:N、初始NO3--N浓度和水温显著影响联合法的脱氮效果,而初始DO浓度对联合法的影响不大。
  • 加载中
  • [1] Angelopoulos K.,Spiliopoulos I.C.,Mandoulaki A.,et al.Groundwater nitrate pollution in northern part of Achaia Prefecture.Desalination,2009,248(1-3):852-858
    [2] Thorburn P.J.,Biggs J.S.,Weier K.L.,et al.Nitrate in groundwaters of intensive agricultural areas in coastal Northeastern Australia.Agriculture Ecosystems and Environment,2003,94(1):49-58
    [3] Salvestrin H.,Hagare P.Removal of nitrates from groundwater in remote indigenous settings in arid Central Australia.Desalination and Water Treatment,2009,11(1-3):151-156
    [4] 徐志伟,张心昱,任玉芬,等.北京城市生态系统地表水硝酸盐污染空间变化及其来源研究.环境科学,2012,33(8):2569-2573 Xu Zhiwei,Zhang Xinyu,Ren Yufen,et al.Spatial changes and sources of nitrate in Beijing urban ecosystem surface water.Environmental Science,2012,33(8):2569-2573(in Chinese)
    [5] Della Rocca C.,Belgiorno V.,Meri S.Overview of in-situ applicable nitrate removal processes.Desalination,2007,204(1-3):46-62
    [6] Fan A.M.,Steinberg V.E.Health implications of nitrate and nitrite in drinking water:An update on methemoglobinemia occurrence and reproductive and developmental toxicity.Regulatory Toxicology and Pharmacology,1996,23(1):35-43
    [7] Ahn S.C.,Oh S.Y.,Cha D.K.Enhanced reduction of nitrate by zero-valent iron at elevated temperatures.Journal of Hazardous Materials,2008,156(1-3):17-22
    [8] Choe S.H.,Ljestrand H.M.,Khim J.Nitrate reduction by zero-valent iron under different pH regimes.Applied Geochemistry,2004,19(3):335-342
    [9] Yang G.C.C.,Lee H.L.Chemical reduction of nitrate by nanosized iron:kinetics and pathways.Water Research,2005,39(5):884-894
    [10] Ghafari S.,Hasan M.,Aroua M.K.Bio-electrochemical removal of nitrate from water and wastewater:A review.Bioresource Technology,2008,99(10):3965-3974
    [11] Shrimali M.,Singh K.P.New methods of nitrate removal from water.Environmental Pollution,2001,112(3):351-359
    [12] Van Rijn J.,Tal Y.,Schreier H.J.Denitrification in recirculating systems:Theory and applications.Aquacultural Engineering,2006,34(3):364-376
    [13] Liu H.,Jiang W.,Wan D.,et al.Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water .Journal of Hazardous Materials,2009,169(1-3):23-28
    [14] 黄国鑫,Fallowfield H.,Guan H.,等.粒状铁与甲醇支持的生物-化学联用法去除富氧地下水中硝酸盐.生态环境学报,2012,21(4):726-732 Huang Guoxin,Fallowfield H.,Guan H.,et al.Combined biological-chemical approach supported by granulated iron and methanol for nitrate removal from oxygen rich groundwater.Ecology and Environmental Sciences,2012,21(4):726-732(in Chinese)
    [15] 黄国鑫,高云鹤,Fallowfield H.,等.零价铁和甲醇支持的联合脱氮用于地下水修复的机理研究.岩矿测试,2012,31(5):855-862 Huang Guoxin,Gao Yunhe,Fallowfield H.,et al.Mechanism study on a combined denitrification approach for nitrate-contaminated groundwater remediation.Rock and Mineral Analysis,2012,31(5):855-862(in Chinese)
    [16] Huang G.,Fallowfield H.,Guan H.,et al.Remediation of nitrate-nitrogen contaminated groundwater by a heterotrophic-autotrophic denitrification(HAD) approach in an aerobic environment.Water,Air,and Soil Pollution,2012,223(7):4029-4038
    [17] APHA,AWWA,WPCF.Standard Methods for the Examination of Water and Wastewater(18th ed.).Washington,D.C.:American Public Health Association(APHA),American Water Works Association(AWWA),Water Pollution Control Federation,1992
    [18] Su C.,Puls R.W.Removal of added nitrate in the single,binary,and ternary systems of cotton burr compost,zerovalent iron,and sediment:Implications for groundwater nitrate remediation using permeable reactive barriers.Chemosphere,2007,67(8):1653-1662
    [19] Della Rocca C.,Belgiorno V.,Meric S.An heterotrophic/autotrophic denitrification(HAD) approach for nitrate removal from drinking water.Process Biochemistry,2006,41(5):1022-1028
    [20] Hunter W.J.Accumulation of nitrite in denitrifying barriers when phosphate is limiting.Journal of Contaminant Hydrology,2003,66(1-2):79-91
    [21] Karanasios K.A.,Vasiliadou I.A.,Pavlou S.,et al.Hydrogenotrophic denitrification of potable water:A review.Journal of Hazardous Materials,2010,180(1-3):20-37
    [22] Liou Y.H.,Lo S.L.,Lin C.J.,et al.Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles.Journal of Hazardous Materials,2005,127(1-3):102-110
  • 加载中
计量
  • 文章访问数:  2187
  • HTML全文浏览数:  1228
  • PDF下载数:  726
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-07-17
  • 刊出日期:  2014-09-28
黄国鑫, 刘菲, 黄园英, 王晓宏, 邹静, 时满. 零价铁与甲醇支持的生物-化学法去除富氧水中的硝酸盐氮[J]. 环境工程学报, 2014, 8(10): 4254-4260.
引用本文: 黄国鑫, 刘菲, 黄园英, 王晓宏, 邹静, 时满. 零价铁与甲醇支持的生物-化学法去除富氧水中的硝酸盐氮[J]. 环境工程学报, 2014, 8(10): 4254-4260.
Huang Guoxin, Liu Fei, Huang Yuanying, Wang Xiaohong, Zou Jing, Shi Man. Nitrate-nitrogen removal from oxygen rich water by a combined biological-chemical approach supported by zero-valent iron and methanol[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4254-4260.
Citation: Huang Guoxin, Liu Fei, Huang Yuanying, Wang Xiaohong, Zou Jing, Shi Man. Nitrate-nitrogen removal from oxygen rich water by a combined biological-chemical approach supported by zero-valent iron and methanol[J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4254-4260.

零价铁与甲醇支持的生物-化学法去除富氧水中的硝酸盐氮

  • 1. 中国肉类食品综合研究中心, 北京 100068
  • 2. 中国地质大学(北京)水资源与环境工程北京市重点实验室, 北京 100083
  • 3. 国家地质实验测试中心, 北京 100037
  • 4. 华北制药集团爱诺有限公司, 石家庄 052165
基金项目:

中国地质调查局项目(1212011121171)

国家国际科技合作项目(0102010DFA92800)

北京市优秀人才培养资助项目(2012D001055000001)

中国博士后科学基金面上项目(2013M541111)

摘要: 针对富氧水中硝酸盐氮(NO3--N),采用零价铁(ZVI)和甲醇支持的生物-化学联合法开展了批实验研究,探讨了ZVI类型、CH3OH:N比、初始溶解氧(DO)浓度、初始NO3--N浓度和水温等5个因素对联合法除氧脱氮效果的影响。结果表明,ZVI的除氧能力由高至低依次为:ZVI-C(0.124 d)>ZVI-A(0.141 d)>ZVI-B(0.179 d)。ZVI支持的联合法NO3--N去除率由高至低依次为:ZVI-A(99.6%)>ZVI-C(95.3%)>ZVI-B(92.2%)。CH3OH:N≤3.5:1时,联合法去除3--N;CH3OH:N=10:1时,去除100%的NO3--N;CH3OH:N=200:1时,去除70.2%的NO3--N。当初始DO浓度介于3.6~5.3 mg/L之间时,联合法的NO3--N去除率介于98.8%~99.6%之间。在任意时刻,低底物浓度(5.2 mg/L)时的NO3--N去除率低于高浓度(21.1 mg/L)时的去除率;低底物浓度下完全脱氮所需时间比高浓度下长2 d。15.0℃时联合法需要7 d可以达到完全脱氮,然而在27.5℃时则需要5 d。低温时亚硝酸盐氮浓度最大值(4.4 mg/L)显著高于高温时的最大值(1.1 mg/L)。ZVI类型、CH3OH:N、初始NO3--N浓度和水温显著影响联合法的脱氮效果,而初始DO浓度对联合法的影响不大。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回