铝铁电极联用电絮凝法处理Cu-EDTA络合废水

谭竹, 杨朝晖, 徐海音, 黄兢, 李璇, 宋佩佩, 杨坚. 铝铁电极联用电絮凝法处理Cu-EDTA络合废水[J]. 环境工程学报, 2014, 8(8): 3167-3173.
引用本文: 谭竹, 杨朝晖, 徐海音, 黄兢, 李璇, 宋佩佩, 杨坚. 铝铁电极联用电絮凝法处理Cu-EDTA络合废水[J]. 环境工程学报, 2014, 8(8): 3167-3173.
Tan Zhu, Yang Zhaohui, Xu Haiyin, Huang Jing, Li Xuan, Song Peipei, Yang Jian. Removal of Cu-EDTA from aqueous solution by electrocoagulation using Al and Fe electrodes[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3167-3173.
Citation: Tan Zhu, Yang Zhaohui, Xu Haiyin, Huang Jing, Li Xuan, Song Peipei, Yang Jian. Removal of Cu-EDTA from aqueous solution by electrocoagulation using Al and Fe electrodes[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3167-3173.

铝铁电极联用电絮凝法处理Cu-EDTA络合废水

  • 基金项目:

    国家自然科学基金资助项目(30970105,50478053)

    国家“水体污染控制与治理”科技重大专项(2009ZX07212-001-02)

  • 中图分类号: X703.1

Removal of Cu-EDTA from aqueous solution by electrocoagulation using Al and Fe electrodes

  • Fund Project:
  • 摘要: 采用电絮凝法处理Cu-EDTA模拟废水,研究电极组合方式、初始pH值和氯化钠浓度3个因素对化学需氧量(COD)和Cu去除效果的影响。实验研究发现,当电极组合方式为2个铝阳极和2个铁阴极,起始pH值为3,氯化钠浓度为0.5 g/L,换极周期为40 min,反应时间为80 min时,COD去除率达到78.7%,Cu离子去除率达到99.9%。通过实验研究确定EDTA的去除机制主要是:酸性条件下的次氯酸氧化作用,碱性条件下的氢氧化物絮凝沉淀作用及单核态铝/铁与多核态铝/铁电荷中和作用,Cu的去除机制主要是氢氧化物的絮凝沉淀作用和铁电极的电沉积作用。
  • [1] Worawan M., Chase Z.Z., Kimberly L.O., et al. Removal efficiency and binding mechanisms of copper and copper-EDTA complexes using polyethyleneimine. Environ. Sci. & Technol., 2008, 42 (6): 2124-2129
    [2] Li Z.B., Shuman L.M. Redistribution of forms of zinc, cadmium and nickel in soils treated with EDTA. Sci. Total. Environ., 1996, 191 (1): 95-107
    [3] Zhang W.H., Tsang D.C.W., Lo I.M.C. Removal of Pb by EDTA-washing in the presence of hydrophobic organic contaminants or anionic surfactant. J. Hazard.Mater., 2008, 155 (3): 433-439
    [4] 陈斌, 王海峰, 吴明铂, 等. 电絮凝处理油田生化出水. 环境工程学报, 2012, 6(7): 2154-2158 Chen B., Wang H. F., Wu M. B., et al. Electrocoagulation treatment of oilfield biochemical sewage. Chinese Journal of Environmental Engineering, 2012, 6(7): 2154-2158(in Chinese)
    [5] Canizares P., Martinez F., Jimenez C., et al. Coagulation and electrocoagulation of wastes polluted with dyes. Environ. Sci. & Technol., 2006, 40 (20): 6418-6424
    [6] 李向东, 冯启言, 宋均轲, 等. 电絮凝处理煤层气产出水. 环境工程学报, 2012, 6(3): 744-748 Li X. D., Feng Q., Song J. K., et al. Treatment of water produced with coal-bed methane by electrocoagulation. Chinese Journal of Environmental Engineering, 2012, 6(3): 744-748(in Chinese)
    [7] 求渊, 施勇琪, 张相阳, 等. 脉冲电絮凝处理电镀含铬废水的实验研究. 环境工程学报, 2009, 3(6): 1029-1032 Qiu Y., Shi Y. Q., Zhang X. Y., et al. Experimental study Oil treating electroplating wastewater containing Cr6+ with pulse-electro-coagulation. Chinese Journal of Environmental Engineering, 2009, 3(6): 1029-1032(in Chinese)
    [8] 陈寒秋. 电絮凝技术在锌冶炼废水处理中的应用. 硫酸工业, 2010,(3): 25-28 Chen H. Q. Application of electrocoagulation technology in Zinc smelting wastewater treatment. Sulphuric Acid Industry, 2010,(3): 25-28(in Chinese)
    [9] Yeh R.S., Wang Y.Y., Wan C.C. Removal of Cu-EDTA compounds via electrochemical process with coagulation. Water Res., 1995, 29 (2): 597-599
    [10] Voglar D., Lestan D. Electrochemical separation and reuse of EDTA after extraction of Cu contaminated soil. J. Hazard. Mater., 2010, 180 (1-3): 152-157
    [11] Durante C., Cuscov M., Isse A.A., et al. Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA. Water Res., 2011, 45 (5): 2122-2130
    [12] Chaudhary A.J., Donaldson J.D., Grimes S.M., et al. Simultaneous recovery of heavy metals and degradation of organic species-copper and ethylenediaminetetra-acetic acid (EDTA). J. Chem. Technol. Biotechnol., 2000, 75 (5): 353-358
    [13] Lai C.L., Lin S.H. Electrocoagulation of chemical mechanical polishing (CMP) wastewater from semiconductor fabrication. Chem. Eng. J., 2003, 95 (1-3): 205-211
    [14] Canizares P., Jimenez C., Martinez F., et al. Study of the electrocoagulation process using aluminum and iron electrodes. Ind. Eng. Chem. Res., 2007, 46 (19): 6189-6195
    [15] 大连理工大学无机化学教研室等. 无机化学. 北京:高等教育出版社, 2008
    [16] Mansouri K., Hannachi A., Wahab A.A., et al. Electrochemically dissolved aluminum coagulants for the removal of natural organic matter from synthetic and real industrial wastewaters. Ind. Eng. Chem. Res., 2012, 51 (5): 2428-2437
    [17] Wang C.T., Chou W.L., Kuo Y.M. Removal of COD from laundry wastewater by electrocoagulation/electroflotation. J. Hazard. Mater., 2009, 164 (1): 81-86
    [18] Durante C., Cuscov M., Isse A.A., et al. Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA. Water Res., 2011, 45 (5): 2122-2130
    [19] Sengil I.A., Özacar M. Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes. J. Hazard. Mater., 2006, 137 (2): 1197-1205
    [20] Lee W.J., Pyun S.I. Effects of hydroxide ion addition on anodic dissolution of pure aluminum in chloride ion containing solution. Electrochim. Acta, 1999, 44 (23): 4041-4049
    [21] Gomes J.A.G., Daida P., Kesmez M., et al. Arsenic removal by electrocoagulation using combined Al-Fe electrode system and characterization of products. J. Hazard. Mater., 2007, 139(2): 220-231
    [22] Goldberg S., Johnston C.T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J. Colloid Interf. Sci., 2001, 234 (1): 204-216
    [23] Finocchio E., Busca G., Lorenzelli V., et al. The activation of hydrocarbon C-H bonds over transition metal oxide catalysts: A FT-IR stud of hydrocarbon catalytic combustion over MgCr2O4. J. Catal., 1995, 151 (1): 204-215
    [24] Balasubramaniam R., Kumar A.V.R. Characterization of Delhi iron pillar rust by X-ray diffraction, Fourier transform infrared spectroscopy and Mossbauer spectroscopy. Corros. Sci., 2000, 42 (12): 2085-2101
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.0 %DOWNLOAD: 2.0 %FULLTEXT: 85.8 %FULLTEXT: 85.8 %META: 12.2 %META: 12.2 %DOWNLOADFULLTEXTMETAHighcharts.com
计量
  • 文章访问数:  1836
  • HTML全文浏览数:  1286
  • PDF下载数:  875
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-08-20
  • 刊出日期:  2014-07-31
谭竹, 杨朝晖, 徐海音, 黄兢, 李璇, 宋佩佩, 杨坚. 铝铁电极联用电絮凝法处理Cu-EDTA络合废水[J]. 环境工程学报, 2014, 8(8): 3167-3173.
引用本文: 谭竹, 杨朝晖, 徐海音, 黄兢, 李璇, 宋佩佩, 杨坚. 铝铁电极联用电絮凝法处理Cu-EDTA络合废水[J]. 环境工程学报, 2014, 8(8): 3167-3173.
Tan Zhu, Yang Zhaohui, Xu Haiyin, Huang Jing, Li Xuan, Song Peipei, Yang Jian. Removal of Cu-EDTA from aqueous solution by electrocoagulation using Al and Fe electrodes[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3167-3173.
Citation: Tan Zhu, Yang Zhaohui, Xu Haiyin, Huang Jing, Li Xuan, Song Peipei, Yang Jian. Removal of Cu-EDTA from aqueous solution by electrocoagulation using Al and Fe electrodes[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3167-3173.

铝铁电极联用电絮凝法处理Cu-EDTA络合废水

  • 1.  湖南大学环境科学与工程学院, 长沙 410082
  • 2.  环境生物与控制教育部重点实验室(湖南大学), 长沙 410082
  • 3.  长沙市人防工程质量监督定额管理站, 长沙 410000
基金项目:

国家自然科学基金资助项目(30970105,50478053)

国家“水体污染控制与治理”科技重大专项(2009ZX07212-001-02)

摘要: 采用电絮凝法处理Cu-EDTA模拟废水,研究电极组合方式、初始pH值和氯化钠浓度3个因素对化学需氧量(COD)和Cu去除效果的影响。实验研究发现,当电极组合方式为2个铝阳极和2个铁阴极,起始pH值为3,氯化钠浓度为0.5 g/L,换极周期为40 min,反应时间为80 min时,COD去除率达到78.7%,Cu离子去除率达到99.9%。通过实验研究确定EDTA的去除机制主要是:酸性条件下的次氯酸氧化作用,碱性条件下的氢氧化物絮凝沉淀作用及单核态铝/铁与多核态铝/铁电荷中和作用,Cu的去除机制主要是氢氧化物的絮凝沉淀作用和铁电极的电沉积作用。

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回