温度对生物活性炭降解卤乙酸的影响

唐顺, 杨宏伟, 林禄辉, 王小(亻毛), 解跃峰. 温度对生物活性炭降解卤乙酸的影响[J]. 环境工程学报, 2014, 8(8): 3161-3166.
引用本文: 唐顺, 杨宏伟, 林禄辉, 王小(亻毛), 解跃峰. 温度对生物活性炭降解卤乙酸的影响[J]. 环境工程学报, 2014, 8(8): 3161-3166.
Tang Shun, Yang Hongwei, Lin Luhui, Wang Xiaomao, Xie Yuefeng. Effect of temperature on haloacetic acid degradation by biologically active carbon[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3161-3166.
Citation: Tang Shun, Yang Hongwei, Lin Luhui, Wang Xiaomao, Xie Yuefeng. Effect of temperature on haloacetic acid degradation by biologically active carbon[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3161-3166.

温度对生物活性炭降解卤乙酸的影响

  • 基金项目:

    环境模拟与污染控制国家重点联合实验室专项基金项目(11Z01ESPCT)

  • 中图分类号: X522

Effect of temperature on haloacetic acid degradation by biologically active carbon

  • Fund Project:
  • 摘要: 卤乙酸(HAAs)是饮用水中常见的氯和氯胺消毒副产物,具有较高的亲水性与致癌性,为了保证水质与人体健康,各国均对其制定了相关规定。考察了生物活性碳(BAC)对9种HAA的去除性能,并探讨HAA生物降解效果随温度的变化情况与生物反应的去除机理,反应动力学与热力学。结果显示,BAC可有效去除水体中的一卤代与二卤代乙酸,难以去除三卤代乙酸。BAC的生物降解性能明显可分为2个部分:低温(5~15℃)基本不发生生物降解;高温(25~35℃)生物降解性能显著。在不同温度下,HAA的生物降解均符合一级反应动力学,反应速率常数为0.01~0.40 min-1;BAC降解HAA的过程不是逐级氢取代卤而是同时脱去所有卤素的反应,卤代乙酸生物反应的活化能为63.5~89.2 kJ/mol。
  • 加载中
  • [1] 张晓健, 李爽. 消毒副产物总致癌风险的首要指标参数——卤乙酸. 给水排水, 2000, 26(8): 1-5 Zhang X.J., Li S. Haloacetic acids as an indicator of the total carcinogentic risk of disinfection byproducts. Water & Waster Engineering, 2000, 26(8): 1-5 (in Chinese)
    [2] 代莎莎, 张春阳, 刘建广, 等. 饮用水消毒副产物的去除途径及进展. 水资源与水工程学报,2006, 17(3): 72-75 Dai S.S., Zhang C.Y., Liu J.G., et al. Removal method and progress of disinfection byproducts in drinking water. Journal of Water Resource & Water Engineering, 2006, 17(3): 72-75 (in Chinese)
    [3] Tung H.H., Xie Y.F. Association between haloacetic acid degradation and heterotrophic bacteria in water distribution systems. Water Research, 2009, 43(4): 971-978
    [4] Zhang P., LaPara T.M., Goslan E.H., et al. Biodegradation of haloacetic acids by bacterial isolates and enrichment cultures from drinking water systems. Environmental Science & Technology, 2009, 43(9): 3169-3175
    [5] 汪昆平. GAC吸附及AOPs去除水中HAAs及其机理研究. 重庆:重庆大学博士学位论文, 2005. 40-60 Wang K.P. The HAA removal from water and the mechanism studies with GAC adsorption and AOPs. Chongqing: Doctor Dissertation of Chongqing University, 2005. 40-60 (in Chinese)
    [6] Wu H.W., Xie Y.F. Effects of EBCT and water temperature on HAA removal using BAC. Journal of Amercian Water Work Association, 2005, 97(11): 94-101
    [7] Method 552.3: Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Microextraction, Derivatization and Gas Chromatography with Electron Capture Detection. Environmental Monitoring and System Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA, 2003
    [8] Rodriguez M.J., Serodes J., Roy D. Formation and fate of haloacetic acids (HAAs) within the water treatment plant. Water Research, 2007, 41(18): 4222-4232
    [9] Ye B., Wang W., Yang L. Factors influencing disinfection by-products formation in drinking water of six cities in China. Journal of Hazardous Materials, 2009, 171(1-3): 147-152
    [10] Hill K.E., Marchesi J.R.,Weightman A.J. Investigation of two evolutionarily unrelated halocarboxylic acid dehalogenase gene families. Journal of Bacteriology, 1999, 181(8): 2535-2547
    [11] Slater, J.H., Bull A.T., Hardman D.J. Microbial dehalogenation of halogenated alkanoic acids, alcohols and alkanes. Advances in Microbial Physiology, 1996, 38: 133-176
    [12] Janssen D.B., Oppentocht J.E., Poelarends G.J. Microbial dehalogenation. Current Opinion in Biotechnology, 2001, 12(3): 254-258
    [13] 周群英, 高廷耀. 环境共程微生物学. 北京: 高等教育出版社, 2003
    [14] Kim H.C., Yu M.J. Characterization of aquatic humic substances to DBPs formation in advanced treatment processes for conventionally treated water. Journal of Hazardous Materials,2007, 143(1-2): 486-493
    [15] Liu J.L., Li X.Y. Biodegradation and biotransformation of wastewater organics as precursors of disinfection byproducts in water. Chemosphere, 2010, 81(9): 1075-1083
  • 加载中
计量
  • 文章访问数:  1637
  • HTML全文浏览数:  1030
  • PDF下载数:  747
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-10-12
  • 刊出日期:  2014-07-31
唐顺, 杨宏伟, 林禄辉, 王小(亻毛), 解跃峰. 温度对生物活性炭降解卤乙酸的影响[J]. 环境工程学报, 2014, 8(8): 3161-3166.
引用本文: 唐顺, 杨宏伟, 林禄辉, 王小(亻毛), 解跃峰. 温度对生物活性炭降解卤乙酸的影响[J]. 环境工程学报, 2014, 8(8): 3161-3166.
Tang Shun, Yang Hongwei, Lin Luhui, Wang Xiaomao, Xie Yuefeng. Effect of temperature on haloacetic acid degradation by biologically active carbon[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3161-3166.
Citation: Tang Shun, Yang Hongwei, Lin Luhui, Wang Xiaomao, Xie Yuefeng. Effect of temperature on haloacetic acid degradation by biologically active carbon[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3161-3166.

温度对生物活性炭降解卤乙酸的影响

  • 1.  清华大学环境学院, 北京 100084
  • 2.  美国宾州州立大学州府学院环境系, 宾夕法尼亚 17057
基金项目:

环境模拟与污染控制国家重点联合实验室专项基金项目(11Z01ESPCT)

摘要: 卤乙酸(HAAs)是饮用水中常见的氯和氯胺消毒副产物,具有较高的亲水性与致癌性,为了保证水质与人体健康,各国均对其制定了相关规定。考察了生物活性碳(BAC)对9种HAA的去除性能,并探讨HAA生物降解效果随温度的变化情况与生物反应的去除机理,反应动力学与热力学。结果显示,BAC可有效去除水体中的一卤代与二卤代乙酸,难以去除三卤代乙酸。BAC的生物降解性能明显可分为2个部分:低温(5~15℃)基本不发生生物降解;高温(25~35℃)生物降解性能显著。在不同温度下,HAA的生物降解均符合一级反应动力学,反应速率常数为0.01~0.40 min-1;BAC降解HAA的过程不是逐级氢取代卤而是同时脱去所有卤素的反应,卤代乙酸生物反应的活化能为63.5~89.2 kJ/mol。

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回