[1]
|
Liu Hong, Logan Bruce E. Electricity generation using an aircathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 2004,38(14): 4040-4046
|
[2]
|
Liu Hong, Cheng Shaoan, Logan Bruce E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology, 2005, 39(2): 658-662
|
[3]
|
Cheng Shaoan, Liu Hong, Logan Bruce E.Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications, 2006, 8(3):489-494
|
[4]
|
Logan Bruce E., Hamelers Bert, Rozendal Rene, et al. Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 2006, 40(17):5181-5192
|
[5]
|
尹航,胡翔.不同阳极微生物燃料电池产电性能的研究.环境工程学报,2013,7(2):608-612 Yin Hang, Hu Xiang. Comparison of power generation performance of different types of anode in microbial fuel cells. Chinese Journal of Environmental Engineering, 2013, 7(2): 608-612(in Chinese)
|
[6]
|
李冬梅,史海凤,殷瑶,等. 磷酸活化石墨的氧还原特性以及用于微生物燃料电池阴极. 环境工程学报,2012,6(7):2454-2460 Li Dongmei, Shi Haifeng, Yin Yao, et al. Graphite-granule activated by H3PO4 for oxygen reduction reaction and as the cathodic material in microbial fuel cells. Chinese Journal of Environmental Engineering, 2012, 6(7): 2454-2460(in Chinese)
|
[7]
|
骆海萍,刘广立,张仁铎,等. 2种不同结构的微生物燃料电池的产电性能比较,环境科学,2009,30(2):621-624 Luo Haiping, Liu Guangli, Zhang Renduo, et al. Comparison of power generation in microbial fuel cells of two different structures. Environmental Science, 2009, 30(2): 621-624(in Chinese)
|
[8]
|
Zhang Fang, Saito Tomonori, Cheng Shaoan, et al. Microbial fuel cell cathodes with Poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current Collectors. Environmental Science & Technology, 2010, 44(4): 1490-1495
|
[9]
|
Cheng Shaoan, Liu Hong, Logan Bruce E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environmental Science & Technology, 2006, 40(1): 364-369
|
[10]
|
唐玉兰,何亚婷,于鹏飞,等.铁碳布空气阴极微生物燃料电池的产电性能.环境工程学报,2013,7(4):1241-1244 Tang Yulan, He Yating, Yu Pengfei, et al. Electricity generation performance of microbial fuel cells with carbon cloth as air-cathode and iron as cathode catalyst. Chinese Journal of Environmental Engineering, 2013, 7(4): 1241-1244(in Chinese)
|
[11]
|
Wang Li, Liang Peng, Zhang Jian, et al. Activity and stability of pyrolyzed iron ethylenediaminetetraacetic acid as cathode catalyst in microbial fuel cells. Bioresource Technology, 2011, 102(8):5093-5097
|
[12]
|
Zhang Fang, Cheng Shaoan, Pant Deepak, et al. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochemistry Communications, 2009, 11(11): 2177-2179
|
[13]
|
Zhang Fang, Pant Deepak, Logan Bruce E. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosensors and Bioelectronics, 2011, 30(1): 49-55
|
[14]
|
Dong Heng, Yu Hongbing, Wang Xin, et al. A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells. Water Research, 2012, 46(17): 5777-5787
|
[15]
|
Dong Heng, Yu Han, Yu Hongbing, et al. Enhanced performance of activated carbon-polytetrafluoroethylene air-cathode by avoidance of sintering on catalyst layer in microbial fuel cells. Journal of Power Sources, 2013, 232(15): 132-138
|
[16]
|
Cheng Shaoan, Wu Jiancheng. Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells. Bioelectrochemistry, 2013, 92: 22-26
|
[17]
|
Deng Qian, Li Xinyang, Zuo Jiane, et al. Power generation using an activated carbon fiber felt cathode in an upfiow microbial fuel cell. Journal of Power Sources, 2010, 195 (4):1130-1135
|
[18]
|
Hou Yanping, Luo Haiping, Liu Guangli, et al. DOW CORNING 1-2577 conformal coating as an efficient diffusion material for cathode in the microbial fuel cell. Frontiers of Environmental Science & Engineering. DOI 10.1007/s11783-013-0532-1, in press
|
[19]
|
Lovley Derek R., Phillips Elizabeth J.P. Novel mode of microbial energy metabolism: Organism carbon oxidation coupled to dissimilatory reduction of iron and manganese. Applied and Environmental Microbiology, 1988, 54(6): 1472-1480
|
[20]
|
国家环境保护局.水和废水监测分析方法(第4版).北京:中国环境科学出版社,2002
|