不同阴极对微生物燃料电池产电性能的影响比较

黎嘉仪, 骆海萍, 袁也, 侯晓月, 刘广立, 侯燕萍, 张仁铎. 不同阴极对微生物燃料电池产电性能的影响比较[J]. 环境工程学报, 2014, 8(8): 3143-3148.
引用本文: 黎嘉仪, 骆海萍, 袁也, 侯晓月, 刘广立, 侯燕萍, 张仁铎. 不同阴极对微生物燃料电池产电性能的影响比较[J]. 环境工程学报, 2014, 8(8): 3143-3148.
Li Jiayi, Luo Haiping, Yuan Ye, Hou Xiaoyue, Liu Guangli, Hou Yanping, Zhang Renduo. Comparison in performance of microbial fuel cells using different cathodes[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3143-3148.
Citation: Li Jiayi, Luo Haiping, Yuan Ye, Hou Xiaoyue, Liu Guangli, Hou Yanping, Zhang Renduo. Comparison in performance of microbial fuel cells using different cathodes[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3143-3148.

不同阴极对微生物燃料电池产电性能的影响比较

  • 基金项目:

    国家自然科学基金资助项目(51278500)

    广州市环保局污染防治新技术新工艺研究开发项目

    广州市科技计划项目(2012J4300115)

    广东省省部产学研项目(2012B091100036)

    中央高校基本科研业务费专项资金项目(13lgpy55)

  • 中图分类号: X703

Comparison in performance of microbial fuel cells using different cathodes

  • Fund Project:
  • 摘要: 阴极催化性能及材料对微生物燃料电池(microbial fuel cells,MFCs)的产电特性及制造成本有很大影响。本研究选用金属铂(Pt)、活性炭作为催化剂、聚四氟乙烯(PTFE)和道康宁1-2577作为阴极的扩散层、碳布和不锈钢网作为阴极的基体材料制备得4种阴极,分别考察了相应MFC的产电性能和阴极特性。结果表明,采用传统Pt催化剂+PTFE扩散层+碳布制备成的阴极(Pt-PTC),MFC的最大输出电压为560 mV,最大功率密度为808 mW/m2,而采用活性炭+道康宁1-2577+不锈钢网制备成的阴极(AC-DCS),MFC的最大输出电压为510 mV,最大功率密度为726 mW/m2,两者的MFC产电性能极为接近。SEM结果表明,活性炭催化层表面和道康宁1-2577扩散层分别比Pt催化层及PTFE扩散层的更均匀光滑。阴极线性伏安测定结果表明,AC-DCS与Pt-PTC的电化学氧化性能较为接近。AC-DCS阴极成本仅为Pt-PTC的1/300左右,是一种低成本扩大化生产MFC阴极的新方法。
  • 加载中
  • [1] Liu Hong, Logan Bruce E. Electricity generation using an aircathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 2004,38(14): 4040-4046
    [2] Liu Hong, Cheng Shaoan, Logan Bruce E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology, 2005, 39(2): 658-662
    [3] Cheng Shaoan, Liu Hong, Logan Bruce E.Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications, 2006, 8(3):489-494
    [4] Logan Bruce E., Hamelers Bert, Rozendal Rene, et al. Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 2006, 40(17):5181-5192
    [5] 尹航,胡翔.不同阳极微生物燃料电池产电性能的研究.环境工程学报,2013,7(2):608-612 Yin Hang, Hu Xiang. Comparison of power generation performance of different types of anode in microbial fuel cells. Chinese Journal of Environmental Engineering, 2013, 7(2): 608-612(in Chinese)
    [6] 李冬梅,史海凤,殷瑶,等. 磷酸活化石墨的氧还原特性以及用于微生物燃料电池阴极. 环境工程学报,2012,6(7):2454-2460 Li Dongmei, Shi Haifeng, Yin Yao, et al. Graphite-granule activated by H3PO4 for oxygen reduction reaction and as the cathodic material in microbial fuel cells. Chinese Journal of Environmental Engineering, 2012, 6(7): 2454-2460(in Chinese)
    [7] 骆海萍,刘广立,张仁铎,等. 2种不同结构的微生物燃料电池的产电性能比较,环境科学,2009,30(2):621-624 Luo Haiping, Liu Guangli, Zhang Renduo, et al. Comparison of power generation in microbial fuel cells of two different structures. Environmental Science, 2009, 30(2): 621-624(in Chinese)
    [8] Zhang Fang, Saito Tomonori, Cheng Shaoan, et al. Microbial fuel cell cathodes with Poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current Collectors. Environmental Science & Technology, 2010, 44(4): 1490-1495
    [9] Cheng Shaoan, Liu Hong, Logan Bruce E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environmental Science & Technology, 2006, 40(1): 364-369
    [10] 唐玉兰,何亚婷,于鹏飞,等.铁碳布空气阴极微生物燃料电池的产电性能.环境工程学报,2013,7(4):1241-1244 Tang Yulan, He Yating, Yu Pengfei, et al. Electricity generation performance of microbial fuel cells with carbon cloth as air-cathode and iron as cathode catalyst. Chinese Journal of Environmental Engineering, 2013, 7(4): 1241-1244(in Chinese)
    [11] Wang Li, Liang Peng, Zhang Jian, et al. Activity and stability of pyrolyzed iron ethylenediaminetetraacetic acid as cathode catalyst in microbial fuel cells. Bioresource Technology, 2011, 102(8):5093-5097
    [12] Zhang Fang, Cheng Shaoan, Pant Deepak, et al. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochemistry Communications, 2009, 11(11): 2177-2179
    [13] Zhang Fang, Pant Deepak, Logan Bruce E. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosensors and Bioelectronics, 2011, 30(1): 49-55
    [14] Dong Heng, Yu Hongbing, Wang Xin, et al. A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells. Water Research, 2012, 46(17): 5777-5787
    [15] Dong Heng, Yu Han, Yu Hongbing, et al. Enhanced performance of activated carbon-polytetrafluoroethylene air-cathode by avoidance of sintering on catalyst layer in microbial fuel cells. Journal of Power Sources, 2013, 232(15): 132-138
    [16] Cheng Shaoan, Wu Jiancheng. Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells. Bioelectrochemistry, 2013, 92: 22-26
    [17] Deng Qian, Li Xinyang, Zuo Jiane, et al. Power generation using an activated carbon fiber felt cathode in an upfiow microbial fuel cell. Journal of Power Sources, 2010, 195 (4):1130-1135
    [18] Hou Yanping, Luo Haiping, Liu Guangli, et al. DOW CORNING 1-2577 conformal coating as an efficient diffusion material for cathode in the microbial fuel cell. Frontiers of Environmental Science & Engineering. DOI 10.1007/s11783-013-0532-1, in press
    [19] Lovley Derek R., Phillips Elizabeth J.P. Novel mode of microbial energy metabolism: Organism carbon oxidation coupled to dissimilatory reduction of iron and manganese. Applied and Environmental Microbiology, 1988, 54(6): 1472-1480
    [20] 国家环境保护局.水和废水监测分析方法(第4版).北京:中国环境科学出版社,2002
  • 加载中
计量
  • 文章访问数:  1813
  • HTML全文浏览数:  1054
  • PDF下载数:  787
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-08-08
  • 刊出日期:  2014-07-31
黎嘉仪, 骆海萍, 袁也, 侯晓月, 刘广立, 侯燕萍, 张仁铎. 不同阴极对微生物燃料电池产电性能的影响比较[J]. 环境工程学报, 2014, 8(8): 3143-3148.
引用本文: 黎嘉仪, 骆海萍, 袁也, 侯晓月, 刘广立, 侯燕萍, 张仁铎. 不同阴极对微生物燃料电池产电性能的影响比较[J]. 环境工程学报, 2014, 8(8): 3143-3148.
Li Jiayi, Luo Haiping, Yuan Ye, Hou Xiaoyue, Liu Guangli, Hou Yanping, Zhang Renduo. Comparison in performance of microbial fuel cells using different cathodes[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3143-3148.
Citation: Li Jiayi, Luo Haiping, Yuan Ye, Hou Xiaoyue, Liu Guangli, Hou Yanping, Zhang Renduo. Comparison in performance of microbial fuel cells using different cathodes[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3143-3148.

不同阴极对微生物燃料电池产电性能的影响比较

  • 1. 广东省环境污染控制与修复技术重点实验室, 中山大学环境科学与工程学院, 广州 510275
基金项目:

国家自然科学基金资助项目(51278500)

广州市环保局污染防治新技术新工艺研究开发项目

广州市科技计划项目(2012J4300115)

广东省省部产学研项目(2012B091100036)

中央高校基本科研业务费专项资金项目(13lgpy55)

摘要: 阴极催化性能及材料对微生物燃料电池(microbial fuel cells,MFCs)的产电特性及制造成本有很大影响。本研究选用金属铂(Pt)、活性炭作为催化剂、聚四氟乙烯(PTFE)和道康宁1-2577作为阴极的扩散层、碳布和不锈钢网作为阴极的基体材料制备得4种阴极,分别考察了相应MFC的产电性能和阴极特性。结果表明,采用传统Pt催化剂+PTFE扩散层+碳布制备成的阴极(Pt-PTC),MFC的最大输出电压为560 mV,最大功率密度为808 mW/m2,而采用活性炭+道康宁1-2577+不锈钢网制备成的阴极(AC-DCS),MFC的最大输出电压为510 mV,最大功率密度为726 mW/m2,两者的MFC产电性能极为接近。SEM结果表明,活性炭催化层表面和道康宁1-2577扩散层分别比Pt催化层及PTFE扩散层的更均匀光滑。阴极线性伏安测定结果表明,AC-DCS与Pt-PTC的电化学氧化性能较为接近。AC-DCS阴极成本仅为Pt-PTC的1/300左右,是一种低成本扩大化生产MFC阴极的新方法。

English Abstract

参考文献 (20)

返回顶部

目录

/

返回文章
返回