EGSB反应器处理焦化废水的颗粒污泥反应动力学研究
Kinetics research of granules in EGSB reactor treating coking wastewater
-
摘要: 为了对处理实际焦化废水微氧EGSB反应器污染物去除机理进行研究,建立了处理实际焦化废水微氧EGSB反应器内污染物质降解动力学模型,考察EGSB反应器启动和稳定运行阶段不同运行条件时COD去除效果,并分析动力学参数的变化。研究确定了处理实际焦化废水(进水COD 2 000 mg/L左右)微氧EGSB反应器在启动和稳定运行阶段所适用的基质降解模型,动力学常数vmax、KI、KS、vmax/KS、KS/KI 分别为7.34×10-3 h-1、197.76 mg/L、19.53 mg/L、3.7×10-4 L/(h·mg)、0.10和2.4×10-2 h-1、66.64 mg/L、44.07 mg/L、5.4×10-4 L/(h·mg)、0.66;微氧EGSB反应器内颗粒污泥能够逐渐适应并高效降解焦化废水中污染物质,焦化废水中毒性污染物质对颗粒污泥的抑制程度是由 KS/KI 决定的,KS/KI 越大,抑制程度越弱,处理实际焦化废水EGSB反应器启动和稳定运行阶段的 KS/KI 分别为0.04~0.1和0.66~0.74;液体上升流速 Vup 的提高能够明显提高最大比基质降解速率 vmax,降低半饱和常数 KS 和抑制常数 KI,最终强化微氧EGSB反应器的运行效果,稳定运行阶段COD去除率高达92.7%。Abstract: To research the removal mechanism of the pollutants in the micro-aerobic EGSB reactor treating coking wastewater, the dynamic models for the degradation of pollutants in the EGSB reactor treating coking wastewater were founded. Moreover, the COD removal of the micro-aerobic EGSB reactor for the start-up and stable operation stage was studied and synchronously dynamics constants were analyzed. The results confirmed the suitable pollutants-utilization dynamic model for the startup and the stable operation stage of the micro-aerobic EGSB reactor treating actual coking wastewater (with about 2 000 mg/L influent COD concentration). The dynamics constant values of vmax、KI、KS, vmax/KS、KS/KI for the startup and the stable operation stage were 7.34×10-3 h-1,197.76 mg/L,19.53 mg/L,3.7×10-4 L/(h·mg),0.10 and 2.4×10-2 h-1,66.64 mg/L,44.07 mg/L,5.4×10-4 L/(h·mg),0.66, respectively. The granules in the micro-aerobic EGSB reactor could gradually adapt and then highly efficiently remove the pollutants in the actual coking wastewater. The inhibitory extent of the toxic or inhibitory compounds on the granules was decided by KS/KI, and the inhibitory extent tended to weaken as KS/KI was increased. The KS/KI values for the startup and stable operation stage of the micro-aerobic EGSB reactor were 0.04~0.1 and 0.66~0.74, respectively. Increasing the liquid up-flow velocity Vup could make the maximum specific substrate removal rate vmax increasing, the half-saturation coefficient KS and inhibitor constant KI decreasing and thus strengthen the operation effect of the micro-aerobic EGSB reactor. The COD removal efficiency of the micro-aerobic EGSB reactor at the stable operation stage could attain 92.7%.
-
Key words:
- coking wastewater /
- granules /
- kinetics /
- liquid up-flow velocity Vup /
- inhibitor constant KI
-
[1] Z.Lewandowsky. Behaviour of Biological reactors in presence of toxic compounds.War. Res., 1987, 21(2): 1147-1153 [2] P. Kumaran, Y. L. Paruchurf. Kinetics of phenol biotransformation.Wat. Res., 1997, 31(1): 11-22 [3] A. Kumar, S. Kumar, S. Kumar. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochem. Eng. J., 2005, 22(2): 151-159 [4] V.Arutchelvan, V.Kanakasabai, R.Elangovan, et al. Kinetics of high strength phenol degradation using Bacillus brevis. Journal of Hazardous Materials, 2006, 129(1-3): 216-222 [5] B.P.Sahariah, S. Chakraborty. Kinetic analysis of phenol, thiocyanate and ammonia-nitrogen removals in an anaerobic-anoxic-aerobic moving bed bioreactor system. Journal of Hazardous Materials, 2011, 190(1-3): 260-267 [6] Kuscu, Ozlem Selcuk, Sponza, et al. Kinetics of para-nitrophenol and chemical oxygen demand removal from synthetic wastewater in an anaerobic migrating blanket reactor. Journal of Hazardous Materials, 2009, 161(2-3): 787-799 [7] Chen Tingting, Zheng Ping, Shen Lidong. Kinetic characteristics and microbial community of Anammox-EGSB reactor. Journal of Hazardous Materials, 2011, 190(1-3): 28-35 [8] Banerjee Aditi, Ghoshal, Aloke K. Phenol degradation by Bacillus cereus: Pathway and kinetic modeling. Bioresource Technology, 2010, 101(14): 5501-5507 [9] S. Philips, W. Verstraete. Effect of repeated addition of nitrite to semi-continuous activated sludge reactors. Bioresource Technology, 2001, 80(1): 73-82 [10] M. Lay-Son, C. Drakides. New approach to optimize operational conditions for the biological treatment of a high-strength thiocyanate and ammonium waste: pH as key factor. Water Res., 2008, 42(3): 774-780 [11] S. Wang, N.C. Rao, R. Qiu, et al. Performance and kinetic evaluation of anaerobic moving bed biofilm reactor for treating milk permeate from dairy industry. Bioresour.Technol., 2009, 100(23): 5641-5647 [12] Dong C.J., Liu X., Zhao Q.L., et al. Mechanish research on performance of EGSB reactor at low temperature. Journal of Harbin Institute of Technology, 2008, 40(10): 1558-1562 [13] 董春娟, 吕炳南. EGSB反应器内颗粒污泥的快速培养及特性研究. 中国给水排水, 2006, 22(15): 62-66 Dong C.J., Lu B.N. Rapid culture and properties research of granular sludge in EGSB reactor. China Water & Wastewater, 2006, 22(15): 62-66(in Chinese) [14] 国家环保总局. 水和废水监测分析方法. 北京:中国环境科学出版社, 2002 [15] S. Sandhya, K. Swaminathan. Kinetic analysis of treatment of textile wastewater in hybrid column upflow anaerobic fixed bed reactor. Chem. Eng. J., 2006, 122(1-2): 87-92
计量
- 文章访问数: 1490
- HTML全文浏览数: 690
- PDF下载数: 764
- 施引文献: 0