纳滤工艺去除水中微量内分泌干扰物

沈智育, 沈耀良, 郭海娟. 纳滤工艺去除水中微量内分泌干扰物[J]. 环境工程学报, 2014, 8(5): 1877-1882.
引用本文: 沈智育, 沈耀良, 郭海娟. 纳滤工艺去除水中微量内分泌干扰物[J]. 环境工程学报, 2014, 8(5): 1877-1882.
Shen Zhiyu, Shen Yaoliang, Guo Haijuan. Removal of trace endocrine disruptors from polluted water with nanofiltration process[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1877-1882.
Citation: Shen Zhiyu, Shen Yaoliang, Guo Haijuan. Removal of trace endocrine disruptors from polluted water with nanofiltration process[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1877-1882.

纳滤工艺去除水中微量内分泌干扰物

  • 基金项目:

    江苏省环境科学与工程重点实验室开放课题(361111201)

    江苏省普通高校研究生科研创新计划项目(CXZZ11-0955)

    苏州科技学院研究生科研创新计划项目(SKCX11S-016)

  • 中图分类号: X703

Removal of trace endocrine disruptors from polluted water with nanofiltration process

  • Fund Project:
  • 摘要: 主要研究了DL1210型纳滤膜去除水中邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-乙基己基)酯(DEHP)、乐果和莠去津的影响因素,考察了温度、pH值、初始浓度、跨膜压力(TMP)和运行时间对膜通量和截留率的影响。结果表明,纳滤工艺是去除水中微量DBP、DEHP、乐果和莠去津的有效方法,初始pH值和温度的升高会导致纳滤膜对DBP、DEHP、乐果和莠去津的截留率的降低,膜对DBP和DEHP的截留率随初始浓度的升高而降低,TMP和运行时间不会对膜通量和目标污染物的截留率造成显著影响。当初始pH为5、初始浓度为5 μg/L、温度为5℃、TMP为0.4 MPa时,纳滤工艺对DBP、DEHP、乐果和莠去津的截留率达到最佳,分别为91.8%、89.8%、98.02%和77.6%,出水中DBP、DEHP、乐果和莠去津浓度分别为0.41、0.49、0.099和1.12 μg/L。
  • 加载中
  • [1] 中华人民共和国卫生部.生活饮用水卫生标准(GB5749-2006), 2006 Ministry of Health of the People's Republic of China. Drinking Water Sanitary Standard (GB5749-2006), 2006(in Chinese)
    [2] 李清雪, 李曼, 梁晓.二级出水中内分泌干扰物的检测和去除实验.山西建筑, 2008, 34(2):15-16 Li Q.X., Li M., Liang X.The study on determination methods and trestment of endocrine disrupting chemicals in secondary effluent water.Shanxi Architecture, 2008, 34(2): 15-16(in Chinese)
    [3] 邵晓玲, 马军.松花江水中13种内分泌干扰物的初步调查.环境科学学报, 2008, 28 (9):1910-1915 Shao X.L., Ma J.Preliminary investugation on 13 endocrine disrupting chemicals in the SongHua River.Acta Scientiae Circumstantiae, 2008, 28 (9):1910-1915(in Chinese)
    [4] Wang X., C. P. Jr Leslie Grady. Comparison of biosorption isotherms for dinbutyl phthalate by live and dead bacteria. Water Research, 1994, 128(5):1247-1251
    [5] Chen C.Y., Chen C.C.Removal of phthalate esters by alpha-cyclodextrin-linked chitosan bead. Bioresource Technology, 2007, 98(13):2578-2583
    [6] Zhang W., Xu Z., Pan B., et al.Equilibrium and heat of adsorption of diethyl phthalate on heterogeneous adsorbents. Journal of Colloid and Interface Science, 2008, 32(1):41-47
    [7] 柴素芬, 曾锋, 傅家谟, 等.DEHP的微生物降解性研究. 中山大学学报(自然科学版), 2000, 39(4):57-60 Chai S.F., Zeng F., Fu J.M., et al.Study of biodegradability Di(2-Ethylhexyl) phthalate.Acta Scientiarum Naturalium Universitatis Sunyatseni, 2000, 39(4):57-60(in Chinese)
    [8] Satoshi Kaneco, Ning Li, Kumi-ko Itoh, et al.Titanium dioxide mediated solar photocatalytic degradation of thiram in aqueous solution: Kinetics and mineralization. Chemical Engineering Journal, 2009, 148(1):50-56
    [9] Peter Roslev, Katrin Vorkamp, Jakob Aarup, et al. Degradation of phthalate esters in an activated sludge wastewater treatment plant. Water Research, 2007, 41(5):969-976
    [10] Roly Oliver, Eric May, John Williams. The occurrence and removal of phthalates in a trickle filter STW. Water Research, 2005, 39(18):4436-4444
    [11] 李海燕, 曲久辉.饮用水中微量内分泌干扰物质(DBP)的O3氧化去除研究.环境科学学报, 2003, 23(5):570-574 Li H.Y., Qu J.H.Ozonation of trace endocrine(DBP) in drinking water.Acta Scientiae Circumstantiae, 2003, 23(5):570-574(in Chinese)
    [12] Ooka Chihiro, Yoshida Hisao, Suzuki Kenzi, et al. Highly hydrophobic TiO2 pillared clay for photocatalytic degradation of organic compounds in water. Microporous and Mesoporous Materials, 2004, 67(2-3):143-150
    [13] 陶光华, 陆少鸣. 乐果微污染原水的碱解-活性炭处理究.水处理技术, 2010, 20(5):106-109 Tao G.H., Lu S.M.Study on the removal of dimethoate in the micro-pollution water.Technology of Water Treatment, 2010, 20(5):106-109(in Chinese)
    [14] Chan K.H., Chu W. The system design of atrazine oxidation by catalytic oxidation process through a kinetic approach. Water Research, 2003, 37(16): 3997-4003
    [15] L.Braeken, B.Vander Bruggen. Feasibility of nanofiltration for the removal of endocrine disrupting compounds. Desalination, 2009, 240(1-3):127-131
    [16] 张阳, 胡锦英, 李光哲, 等.纳滤去除水中内分泌干扰物双酚A和四溴双酚A的研究.环境科学, 2010, 31(6): 1513-1517 Zang Y., Hu J.Y., Li G.Z., et al.Removal of bisphenol A and tetrabromobisphenol A by nanofiltration membrane from water source.Environmental Science, 2010, 31(6): 1513-1517(in Chinese)
    [17] A.L.Ahmad, L.S. Tan, S.R.Abd. Shukor.Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes. Journal of Hazardous Materials, 2008, 151(1):71-77
    [18] Konstantinos V. Plakas, Anastasios J. Karabelas.A systematic study on triazine retention by fouled with humic substances NF/ULPRO membranes. Separation and Purification Technology, 2011, 80(2):46-261
    [19] Konstantinos V. Plakas, Anastasios J. Karabelas. A systematic study on triazine retention by fouled with humic substances NF/ULPRO membranes. Separation and Purification Technology, 2011, 80(2):246-261
    [20] Alexander Caus, Stefaan Vanderhaegen. Integrated nanofiltration cascades with low salt rejection for complete removalof pesticides in drinking water production. Desalination, 2009, 241(1-3):111-117
    [21] 黄裕, 张晗, 董秉直.纳滤膜去除卡马西平的影响研究.环境科学, 2011, 32(3):705-710 Huang Yu, Zhang Han, Dong Bingzhi.Researches on factors affecting the removal of carbamazepine by nanofilatration membranes. Environmental Science, 2011, 32(3):705-710(in Chinese)
  • 加载中
计量
  • 文章访问数:  1768
  • HTML全文浏览数:  1017
  • PDF下载数:  769
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-05-03
  • 刊出日期:  2014-05-06
沈智育, 沈耀良, 郭海娟. 纳滤工艺去除水中微量内分泌干扰物[J]. 环境工程学报, 2014, 8(5): 1877-1882.
引用本文: 沈智育, 沈耀良, 郭海娟. 纳滤工艺去除水中微量内分泌干扰物[J]. 环境工程学报, 2014, 8(5): 1877-1882.
Shen Zhiyu, Shen Yaoliang, Guo Haijuan. Removal of trace endocrine disruptors from polluted water with nanofiltration process[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1877-1882.
Citation: Shen Zhiyu, Shen Yaoliang, Guo Haijuan. Removal of trace endocrine disruptors from polluted water with nanofiltration process[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1877-1882.

纳滤工艺去除水中微量内分泌干扰物

  • 1. 苏州科技学院环境科学与工程学院, 苏州 215009
  • 2. 台州学院建筑工程学院, 台州 317000
基金项目:

江苏省环境科学与工程重点实验室开放课题(361111201)

江苏省普通高校研究生科研创新计划项目(CXZZ11-0955)

苏州科技学院研究生科研创新计划项目(SKCX11S-016)

摘要: 主要研究了DL1210型纳滤膜去除水中邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-乙基己基)酯(DEHP)、乐果和莠去津的影响因素,考察了温度、pH值、初始浓度、跨膜压力(TMP)和运行时间对膜通量和截留率的影响。结果表明,纳滤工艺是去除水中微量DBP、DEHP、乐果和莠去津的有效方法,初始pH值和温度的升高会导致纳滤膜对DBP、DEHP、乐果和莠去津的截留率的降低,膜对DBP和DEHP的截留率随初始浓度的升高而降低,TMP和运行时间不会对膜通量和目标污染物的截留率造成显著影响。当初始pH为5、初始浓度为5 μg/L、温度为5℃、TMP为0.4 MPa时,纳滤工艺对DBP、DEHP、乐果和莠去津的截留率达到最佳,分别为91.8%、89.8%、98.02%和77.6%,出水中DBP、DEHP、乐果和莠去津浓度分别为0.41、0.49、0.099和1.12 μg/L。

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回