畜禽养殖废水生物处理剩余污泥臭氧减量过程中的重金属释放

何帅雄, 陈梅雪, 强志民. 畜禽养殖废水生物处理剩余污泥臭氧减量过程中的重金属释放[J]. 环境工程学报, 2014, 8(1): 55-61.
引用本文: 何帅雄, 陈梅雪, 强志民. 畜禽养殖废水生物处理剩余污泥臭氧减量过程中的重金属释放[J]. 环境工程学报, 2014, 8(1): 55-61.
He Shuaixiong, Chen Meixue, Qiang Zhimin. Release behavior of heavy metals in the ozonation of sludge from swine wastewater biological treatment process[J]. Chinese Journal of Environmental Engineering, 2014, 8(1): 55-61.
Citation: He Shuaixiong, Chen Meixue, Qiang Zhimin. Release behavior of heavy metals in the ozonation of sludge from swine wastewater biological treatment process[J]. Chinese Journal of Environmental Engineering, 2014, 8(1): 55-61.

畜禽养殖废水生物处理剩余污泥臭氧减量过程中的重金属释放

  • 基金项目:

    国家自然科学基金资助项目(51138009)

    中国科学院重点部署项目(KZZD-EW-09)

    公益性行业(农业)项目(201303091)

  • 中图分类号: X703

Release behavior of heavy metals in the ozonation of sludge from swine wastewater biological treatment process

  • Fund Project:
  • 摘要: 采用臭氧氧化污泥减量法对畜禽养殖废水SBR中的剩余污泥进行处理。当臭氧反应时间控制在30 min时,污泥的溶解比例在30%左右(以 MLSS计)。上清液中一定量的SCOD溶出可为生物处理单元提供充足的碳源,同时在上清液中,TN、TP及水相重金属浓度增加有限,臭氧氧化后的污泥液回流污水处理系统后造成的N、P处理负荷较小,重金属对污泥微生物的活性抑制风险较低。若继续延长臭氧的反应时间,上清液SCOD、TN、TP以及重金属Cu、Pb的释放速率明显增加,同时上清液的C/N降低,臭氧化后的污泥液回流反而不利于生物单元的脱氮处理。综合考虑TN、TP及水相重金属浓度增加的危害性,臭氧反应时间应控制在30 min,臭氧实际投加量应为123.1 mg O3/g SS。
  • 加载中
  • [1] Zhang Guangming, Yang Jing, Liu Huanzhi, et al. Sludge ozonation: Disintegration, supernatant changes and mechanisms. Biresource Technology, 2009, 100(8):1505-1509
    [2] 徐韦明, 孙力平, 赵乐振, 等. 臭氧氧化污泥工艺的剩余污泥零排放理论可行性研究. 给水排水,2010, 36(增刊):203-206 Xu Weiming, Sun Liping, Zhao Lezhen, et al. Feasibility theoretical studies of zero excess sludge discharge in sludge ozonation process. Water and Wastewater Engineering, 2010, 36(S1):203-206(in Chinese)
    [3] Yasui H., Shibata M. Innovative approach to reduce excess sludge production in the activated sludge process. Water Science and Technology, 1995, 30(9):11-20
    [4] Yasui H., Nakamura K., Lwasaki M., et al. A full-scale operation of a novel activated sludge process without excess sludge production. Water Science and Technology, 1996, 34(3):395-404
    [5] 魏源送, 樊耀波. 污泥减量技术的研究及其应用. 中国给水排水,2001, 17(7):23-26 Wei Yuansong, Fan Yaobo. The research and application of sludge reduction technologies. China Water and Wastewater, 2001, 17(7):23-26(in Chinese)
    [6] 梁鹏, 黄霞, 钱易.污泥减量化技术的研究进展. 环境污染治理技术与设备. 2003, 4(1): 44-52 Liang Peng, Huang Xia, Qian Yi. Research progress on sludge reduction technologies. Techniques and Equipment for Environmental Pollution Control, 2003, 4(1):44-52 (in Chinese)
    [7] Sui P.Z., Nishimura F., Nagare H., et al. Behavior of inorganic elements during sludge ozonation and their effects on sludge solubilization. Water Research, 2011, 45(8):2029-2037
    [8] 敖子强, 熊继海, 王顺发, 等. 畜禽养殖废弃物重金属铜的污染治理及循环利用. 广东农业科学, 2011, 17(1):127-129 Ao Ziqiang, Xiong Jihai, Wang Shunfa, et al. Pollution control and recycling of copper in the livestock waste. Guangdong Agricultural Sciences, 2011, 17(1):127-129
    [9] Ben Weiwei, Qiang Zhimin, Pan Xun, et al. Removal of veterinary antibiotics from sequencing batch reactor (SBR) pretreated swine wastewater by Fenton's reagent. Water Research, 2009, 43(17): 4392-4402
    [10] 谢冰. 重金属对活性污泥微生物的影响. 上海化工,2004,(2):13-16 Xie bing. A review of effects of heavy metals on activated sludge microorganism. Shanghai Chemical Industry, 2004, (2):13-16 (in Chinese)
    [11] Alberto C., Sara F., Fernando M. Effects of copper and zinc on the activated sludge bacteria growth kinetics. Water Research, 1998, 32(5): 1355-1362
    [12] Nurdan Y.B., Tulay A.O., Onder H. Combined effects of Cu and Zn on activated sludge process. Water Research, 1997, 31(4): 699-704
    [13] Chaudri A. M., Knight B.P., Barbosa J.V.L., et al. Determination of acute Zn toxicity in pore water from soils previously treated with sewage sludge using bioluminescence assays. Environmental Science Technology, 1999, 33(11): 1880-1885
    [14] Madoni P., Davoli D., Gorbi G., et al. Toxic effect of heavy metals on the activated sludge protozoan community. Water Research, 1996, 30(1): 135-141
    [15] Malaney G.W., Sheets W. D., Quillin R. Influence of zinc on biological treatment by activated sludge. Sewage and Industrial Waster, 1959, 31(11): 1309-1315
    [16] 秦德韬, 徐勐, 潘寻, 等. 优化控制SBR工艺处理养猪废水中试研究. 环境工程学报, 2012, 6(2):361-365 Qin Detao, Xu Meng, Pan Xun, et al. Pilot study on SBR process with optimized control for swine wastewater treatment. Chinese Journal of Environmental Engineering, 2012, 6(2):361-365(in Chinese)
    [17] 秦德韬, 陈梅雪, 丁然, 等. 养殖废水SBR碳源投加实时控制研究. 环境工程学报, 2010, 4(9):1932-1936 Qin Detao, Chen Meixue, Ding Ran, et al. Livestock wastewater treatment by SBR with external carbon source addition controlled by real-time strategy. Chinese Journal of Environmental Engineering, 2010, 4(9):1932-1936(in Chinese)
    [18] 吴季松, 刘雅鸣. 水资源水环境卷:分析方法.//水利技术标准汇编. 北京: 中国水利水电出版社, 2002
  • 加载中
计量
  • 文章访问数:  2096
  • HTML全文浏览数:  1360
  • PDF下载数:  815
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-03-08
  • 刊出日期:  2014-01-03
何帅雄, 陈梅雪, 强志民. 畜禽养殖废水生物处理剩余污泥臭氧减量过程中的重金属释放[J]. 环境工程学报, 2014, 8(1): 55-61.
引用本文: 何帅雄, 陈梅雪, 强志民. 畜禽养殖废水生物处理剩余污泥臭氧减量过程中的重金属释放[J]. 环境工程学报, 2014, 8(1): 55-61.
He Shuaixiong, Chen Meixue, Qiang Zhimin. Release behavior of heavy metals in the ozonation of sludge from swine wastewater biological treatment process[J]. Chinese Journal of Environmental Engineering, 2014, 8(1): 55-61.
Citation: He Shuaixiong, Chen Meixue, Qiang Zhimin. Release behavior of heavy metals in the ozonation of sludge from swine wastewater biological treatment process[J]. Chinese Journal of Environmental Engineering, 2014, 8(1): 55-61.

畜禽养殖废水生物处理剩余污泥臭氧减量过程中的重金属释放

  • 1. 中国科学院生态环境研究中心环境水质学国家重点实验室, 北京 100085
基金项目:

国家自然科学基金资助项目(51138009)

中国科学院重点部署项目(KZZD-EW-09)

公益性行业(农业)项目(201303091)

摘要: 采用臭氧氧化污泥减量法对畜禽养殖废水SBR中的剩余污泥进行处理。当臭氧反应时间控制在30 min时,污泥的溶解比例在30%左右(以 MLSS计)。上清液中一定量的SCOD溶出可为生物处理单元提供充足的碳源,同时在上清液中,TN、TP及水相重金属浓度增加有限,臭氧氧化后的污泥液回流污水处理系统后造成的N、P处理负荷较小,重金属对污泥微生物的活性抑制风险较低。若继续延长臭氧的反应时间,上清液SCOD、TN、TP以及重金属Cu、Pb的释放速率明显增加,同时上清液的C/N降低,臭氧化后的污泥液回流反而不利于生物单元的脱氮处理。综合考虑TN、TP及水相重金属浓度增加的危害性,臭氧反应时间应控制在30 min,臭氧实际投加量应为123.1 mg O3/g SS。

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回