水位波动带氮素迁移转化规律

李翔, 席北斗, 姜永海, 袁志业, 张进保, 安达, 杨昱, 马志飞. 水位波动带氮素迁移转化规律[J]. 环境工程学报, 2013, 7(12): 4703-4708.
引用本文: 李翔, 席北斗, 姜永海, 袁志业, 张进保, 安达, 杨昱, 马志飞. 水位波动带氮素迁移转化规律[J]. 环境工程学报, 2013, 7(12): 4703-4708.
Li Xiang, Xi Beidou, Jiang Yonghai, Yuan Zhiye, Zhang Jinbao, An Da, Yang Yu, Ma Zhifei. Nitrogen migration and transformation in fluctuation belt of water table[J]. Chinese Journal of Environmental Engineering, 2013, 7(12): 4703-4708.
Citation: Li Xiang, Xi Beidou, Jiang Yonghai, Yuan Zhiye, Zhang Jinbao, An Da, Yang Yu, Ma Zhifei. Nitrogen migration and transformation in fluctuation belt of water table[J]. Chinese Journal of Environmental Engineering, 2013, 7(12): 4703-4708.

水位波动带氮素迁移转化规律

  • 基金项目:

    国家自然科学基金资助项目(51208487)

    环保公益项目(201309003)

  • 中图分类号: X523

Nitrogen migration and transformation in fluctuation belt of water table

  • Fund Project:
  • 摘要: 为考察水位波动对非饱和-饱和土层中氮素迁移转化的影响,设计土柱实验装置Ⅰ和Ⅱ分别模拟水位稳定与波动两种情景,测定一个水位波动周期内地下水中NO3--N、NO2--N和NH4+-N浓度变化情况。结果表明,柱Ⅱ水位第1次下降柱内1#,2#,3#,4#采样点NO3--N浓度均增大,增幅分别为6.5%、14.9%、15.33%和19.8%。水位上升时结果相反,分别降低17.3%、26.15%、50.29%和44.61%。第2次水位下降至初始位置4个采样点NO3--N浓度再次增大,幅度分别为7.1%、10.6%、13.89%和7.76%。铵态氮呈相反趋势不同程度的变化。水位波动柱Ⅱ连通水槽内总氮量增加显著高于柱I水槽,即水位波动有利于波动带地下水中氮素垂向迁移,加重波动带以下地下水硝酸盐污染。因此,水位波动对氮素迁移转化的影响不容忽视。
  • 加载中
  • [1] Kampbell D. H., An Y., Jewell K. P., et al. Ground water quality surrounding Lake Texoma during short-term drought conditions. Environmental Pollution, 2003, 125(2):183-191
    [2] Nolan B. T., Stoner J. D. Nutrients in ground waters of the conterminous United States, 1992—1995. Environmental Science and Technology, 2000, 34(7):1156-1165
    [3] Jacobs T. C., Gilliam J. W. Riparian losses of nitrate from agricultural drainage waters. Journal of Environmental Quality, 1985, 14(4): 472-478
    [4] Harter T., Davis H., Mathews M. C., et al. Shallow ground water quality on dairy farms with irrigated forage crops. Journal of Contaminant Hydrology, 2002, 55(3-4):287-315
    [5] Reddy M. R., Dunn S. J. Effect of domestic effluents on ground-water quality: A case study. Science of the Total Environment, 1984, 40(1):115-124
    [6] Hallberg G. R., Keeney D. R. Nitrate. In: W. A.(Ed.). Regional Ground-Water Quality. Van Nostrand Reinhold, New York, 1993.297-322
    [7] Ashworth D. J., Moore J., Shaw G. Effects of soil type, moisture content, redox potential and methyl bromide fumigation on Kd values of radio-selenium in soil. Journal of Environmental Radioactivity, 2008, 99(7):1136-1142
    [8] Ashworth D. J., Shaw G. Effect of moisture content and redox potential on in situ Kd values for radioiodine in soil. Science of the Total Environment, 2006, 359(7):244-254
    [9] Steffy D. A., Johnston C. D., Barry D. A. Numerical simulations and long-column tests of LNAPL displacement and trapping by a fluctuating water table. Journal of Soil Contamination, 1998, 7(3):325-356
    [10] Masashi Kamon, Kazuto Endo, Takeshi Katsumi. Measuring the k-S-p relations on DNAPLs migration. Engineering Geology, 2003, 70(3-4):351-363
    [11] 谢小茜, 李雁, 夏北成, 等.水位波动下沙介质中饱和度-毛细压力关系滞后研究.土壤学报, 2011, 48(2):286-294 Xie Xiaoxi, Li Yan, Xia Beicheng, et al. Hysteresis of saturation-capillary pressure relationship under fluctuating water level in sandy medium. Acta Pedologica Sinica, 2011, 48(2):286-294(in Chinese)
    [12] Chris C.Tanner, Joachim D'Eugenio, Graham B.McBride, et al. Effect of water level fluctuation on nitrogen removal from constructed wetland mesocosms. Ecological Engineering, 1999, 12(1-2):67-92
    [13] Rainwater K., Mayfield M.P., Heintz C., et al. Enhanced in situ biodegradation of diesel fuel by cyclic vertical water table movement: Preliminary studies. Water Environ. Res., 1993, 65(6):717-725
    [14] Masashi Kamon, Yan Li, Toru Inui, et al. Experimental study on the measurement of SP relations of LNAPL in a porous medium. Soils and Foundations, 2007, 47(1):33-46
    [15] 张福珠, 熊先哲, 戴同顺.应用15N研究土壤-植物系统中氮素淋失动态.环境科学, 1984, 5(1):21-24 Zhang Fuzhu, Xiong Xianzhe, Dai Tongshun. The study of using 15N in leaching dynamics of nitrogen in soil-plant system.Environmental Science, 1984, 5(1):21-24(in Chinese)
    [16] Gersberg R. M., Elkins B. V., Lyon S. R., et al. Role of aquatic plants in wasterwater treatment by artificial wetlands. Water Res., 1986, 20(3):363-368
    [17] Brix H., Schierup H. Soil oxygenation in constructed reed beds: The role of macrophyte and soil-atmosphere interface oxygen transport. In: Cooper P.F., Findlater B.C.(Eds.). Constructed Wetlands in Water Pollution Control. Pergamon, Oxford, 1990. 53-66
    [18] Hammer D. A., Knight R. L. Designing constructed wetlands for nitrogen removal. Water Sci.Technol., 1994, 29(4):15-27
    [19] Jayaweera G. R., Mikkelsen D. S. Assessment of ammonia volatilization from flooded soil systems. Advances in Agronomy, 1991, 45:303-356
    [20] Desimone L. A., Howes B. L. Nitrogen transport and transformation in a shallow aquifer receiving wastewater discharge: A mass balance approach. Water Resoure.Res., 1998, 34(2):271-285
    [21] 高茂生, 李明, 刘宝林, 等. 反硝化在土壤及地下水中的净化作用. 再生资源研究, 2003, (6): 38-40 Gao Maosheng, Li Ming, Liu Baoning, et al. The puritication of the denitrification in soil and groundwater. Recycling Research, 2003, (6):38-40(in Chinese)
  • 加载中
计量
  • 文章访问数:  1409
  • HTML全文浏览数:  873
  • PDF下载数:  933
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-03-27
  • 刊出日期:  2013-12-08
李翔, 席北斗, 姜永海, 袁志业, 张进保, 安达, 杨昱, 马志飞. 水位波动带氮素迁移转化规律[J]. 环境工程学报, 2013, 7(12): 4703-4708.
引用本文: 李翔, 席北斗, 姜永海, 袁志业, 张进保, 安达, 杨昱, 马志飞. 水位波动带氮素迁移转化规律[J]. 环境工程学报, 2013, 7(12): 4703-4708.
Li Xiang, Xi Beidou, Jiang Yonghai, Yuan Zhiye, Zhang Jinbao, An Da, Yang Yu, Ma Zhifei. Nitrogen migration and transformation in fluctuation belt of water table[J]. Chinese Journal of Environmental Engineering, 2013, 7(12): 4703-4708.
Citation: Li Xiang, Xi Beidou, Jiang Yonghai, Yuan Zhiye, Zhang Jinbao, An Da, Yang Yu, Ma Zhifei. Nitrogen migration and transformation in fluctuation belt of water table[J]. Chinese Journal of Environmental Engineering, 2013, 7(12): 4703-4708.

水位波动带氮素迁移转化规律

  • 1. 中国环境科学研究院国家重点环境标准与环境评估实验室, 北京 100012
基金项目:

国家自然科学基金资助项目(51208487)

环保公益项目(201309003)

摘要: 为考察水位波动对非饱和-饱和土层中氮素迁移转化的影响,设计土柱实验装置Ⅰ和Ⅱ分别模拟水位稳定与波动两种情景,测定一个水位波动周期内地下水中NO3--N、NO2--N和NH4+-N浓度变化情况。结果表明,柱Ⅱ水位第1次下降柱内1#,2#,3#,4#采样点NO3--N浓度均增大,增幅分别为6.5%、14.9%、15.33%和19.8%。水位上升时结果相反,分别降低17.3%、26.15%、50.29%和44.61%。第2次水位下降至初始位置4个采样点NO3--N浓度再次增大,幅度分别为7.1%、10.6%、13.89%和7.76%。铵态氮呈相反趋势不同程度的变化。水位波动柱Ⅱ连通水槽内总氮量增加显著高于柱I水槽,即水位波动有利于波动带地下水中氮素垂向迁移,加重波动带以下地下水硝酸盐污染。因此,水位波动对氮素迁移转化的影响不容忽视。

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回