低温喹啉降解菌的筛选及降解性能

王培明, 霍明昕, 朱遂一, 吕婷婷, 杨武, 王健, 郭帅, 徐东方, 刘志强. 低温喹啉降解菌的筛选及降解性能[J]. 环境工程学报, 2013, 7(1): 154-158.
引用本文: 王培明, 霍明昕, 朱遂一, 吕婷婷, 杨武, 王健, 郭帅, 徐东方, 刘志强. 低温喹啉降解菌的筛选及降解性能[J]. 环境工程学报, 2013, 7(1): 154-158.
Wang Peiming, Huo Mingxin, Zhu Suiyi, Lü Tingting, Yang Wu, Wang Jian, Guo Shuai, Xu Dongfang, Liu Zhiqiang. Screening of quinoline-degradation bacteria and their biodegradation capability at low temperature[J]. Chinese Journal of Environmental Engineering, 2013, 7(1): 154-158.
Citation: Wang Peiming, Huo Mingxin, Zhu Suiyi, Lü Tingting, Yang Wu, Wang Jian, Guo Shuai, Xu Dongfang, Liu Zhiqiang. Screening of quinoline-degradation bacteria and their biodegradation capability at low temperature[J]. Chinese Journal of Environmental Engineering, 2013, 7(1): 154-158.

低温喹啉降解菌的筛选及降解性能

  • 基金项目:

    国家自然科学基金资助项目 (51108069)

  • 中图分类号: X703

Screening of quinoline-degradation bacteria and their biodegradation capability at low temperature

  • Fund Project:
  • 摘要: 从吉林石化污水处理厂的活性污泥中驯化、筛选获得一株降解效率高且生长速率快高效耐冷菌,命名为WS-5。该菌能以喹啉作为惟一的碳源、氮源及能源。结合菌体的形态观察、生理生化特性实验及16S rDNA 序列同源性对比分析,鉴定菌株WS-5为恶臭假单胞菌(Pseudomonas putida)。不同降解条件下的实验结果表明,菌株WS-5的最佳降解条件是投菌量为15%,pH值范围在8~10,摇床转速为100 r/min。最佳降解环境下对200 mg/L的喹啉在132 h降解率达到了85.3%。菌株WS-5对初始喹啉浓度为50、100、200和300 mg/L的初始喹啉浓度分别在36、72、192和262 h内完全降解。这将为今后在低温条件下处理含喹啉废水提供技术指导。
  • 加载中
  • [1] Wang J. L., Quan X. C., Han L, et al. Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii. Water Research, 2002, 36(9): 2288-2296
    [2] Matoic' M., Prstec I., Jakopovic' H.K., et al. Treatment of beverage production wastewater by membrane bioreactor. Desalination, 2009, 246(1-3): 285-293
    [3] Liu H. B., Yang C. Z., Pu W. H., et al. Removal of nitrogen from wastewater for reusing to boiler feed-water by an anaerobic/aerobic/membrane bioreactor. Chemical Engineering Journal, 2008, 140(1-3): 122-129
    [4] Luostarinen S., Luste S., Valentin L., et al. Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperatures. Water Research, 2006, 40(8): 1607-1615
    [5] Brumly W. C., Brownrigg C. M., Brilis G. M. Characterization of nitrogencontaining aromatic compounds in soil and sediment by capillary gas chromatography-mass spectrometry after fractionation. Journal of Chromatography A, 1991, 558(1): 223-233
    [6] Bai Y., Sun Q., Xing R., et al. Removal of pyridine and quinoline by bio-zeolite composed of mixed degrading bacteria and modified zeolite. Journal of Hazardous Materials, 2010, 181 (1-3): 916-922
    [7] LaVoie E. J., Shigematsu A., Adams E. A., et al. Tumor initiatingactivity of quinoline and methylated quinolines on the skin of SENCAR mice. Cancer Letters, 1984, 22(3): 269-273
    [8] Qiao L., Wang J., Biodegradation characteristics of quinoline by Pseudomonas putida. Bioresource Technology, 2010, 101(19): 7683-7686
    [9] Vico L.I., Acebal S.G. Some aspects about the adsorption of quinoline on fibrous silicates and Patagonian saponite. Applied Clay Science, 2006, 33(2): 142-148
    [10] Chen S. H., Lv B. L., Xu Y. Fe-quinoline complexes sensitized Si-doped TiO2 with enhanced visible light photocatalytic activity. Materials Letters, 2012, 77: 32-34
    [11] Nedoloujko A., Kiwi J. Parameters affecting the homogeneous and heterogeneous degradation of quinoline solutions in light-activated processes. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 110(2): 149-157
    [12] Cui M. C., Chen F. Z., Fu J. M., et al. Microbial metabolism of quinoline by Comamonas sp. World Journal of Microbiology and Biotechnology, 2004, 20(6): 539-543
    [13] Wang J. L., Han L. P., Shi H. C., et al.. Biodegradation of quinoline by gel immobilized Burkholderia sp. Chemosphere, 2001, 44(5): 1041-1046
    [14] Cui M.C., Chen F.Z., Fu J.M., et al. Microbial metabolism of quinoline by Comamonas sp. World Journal of Microbiology and Biotechnology, 2004, 20(6): 539-543
    [15] Sun Q. H., Bai Y. H., Zhao C., et al. Aerobic biodegradation characteristics and metabolic products of quinoline by a Pseudomonas strain. Bioresource Technology, 2009, 100(21): 5030-5036
    [16] Tuo B. H, Yan J. B., Fan B. A., et al. Biodegradation characteristics and bioaugmentation potential of a novel quinoline-degrading strain of Bacillus sp. isolated from petroleum-contaminated soil. Bioresouce Technology, 2012, 107: 55-60
    [17] Zhu S. N., Liu D. Q., Fan L. Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge. Journal of Hazardous Materials, 2008, 160(2-3): 289-294
    [18] Knoop S., Kunst S. Influence of temperature and sludge loading on activated sludge setting, especially on Microthrix parvicella. Water Science and Technology, 1998, 37(4-5): 27-35
    [19] Margesin R., Moertelmaier C., Mair J. Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. International Biodeterioration & Biodegradation. 2012, doi:10.1016/j.ibiod
    [20] 东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001
    [21] Buchanan R.E., Gibbons N. E. Bergey’s Manual of Determinative Bacteriology. 8th ed. Baltimore: Williams& Wilikins Company, 1974
    [22] Sambrook J., Russell D. W. Molecular Cloning: A Laboratory Manual. (3rd ed.). USA: Cold Spring Harbor Laboratory Press, 2001
    [23] 张秀霞, 耿春香, 赵朝成, 等, 喹啉降解菌的降解效果考察. 环境工程学报, 2008, 2(1): 88-91 Zhang X.X., Geng C.X., Zhao C.C., et al. Study on degrading effect of quinoline degrading strains. Chinese Journal of Environmental Engineering, 2008, 2(1): 88-91(in Chinese)
    [24] 崔明超, 李丽, 陈繁忠. 喹啉及其衍生物微生物降解研究进展. 上海环境科学, 2003, 22(1): 52-54 Cui M.C., Li L., Chen F.Z. Study progresson biodegradation of quinoline and its derivatives. Shanghai Environmental Sciences, 2003, 22(1): 52-54 (in Chinese)
    [25] 岑沛霖,蔡谨.工业微生物学.北京:化学工业出版社, 2000. 134-138
  • 加载中
计量
  • 文章访问数:  2181
  • HTML全文浏览数:  965
  • PDF下载数:  1370
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-10-24
  • 刊出日期:  2013-01-16
王培明, 霍明昕, 朱遂一, 吕婷婷, 杨武, 王健, 郭帅, 徐东方, 刘志强. 低温喹啉降解菌的筛选及降解性能[J]. 环境工程学报, 2013, 7(1): 154-158.
引用本文: 王培明, 霍明昕, 朱遂一, 吕婷婷, 杨武, 王健, 郭帅, 徐东方, 刘志强. 低温喹啉降解菌的筛选及降解性能[J]. 环境工程学报, 2013, 7(1): 154-158.
Wang Peiming, Huo Mingxin, Zhu Suiyi, Lü Tingting, Yang Wu, Wang Jian, Guo Shuai, Xu Dongfang, Liu Zhiqiang. Screening of quinoline-degradation bacteria and their biodegradation capability at low temperature[J]. Chinese Journal of Environmental Engineering, 2013, 7(1): 154-158.
Citation: Wang Peiming, Huo Mingxin, Zhu Suiyi, Lü Tingting, Yang Wu, Wang Jian, Guo Shuai, Xu Dongfang, Liu Zhiqiang. Screening of quinoline-degradation bacteria and their biodegradation capability at low temperature[J]. Chinese Journal of Environmental Engineering, 2013, 7(1): 154-158.

低温喹啉降解菌的筛选及降解性能

  • 1. 东北师范大学城市与环境科学学院,长春 130024
基金项目:

国家自然科学基金资助项目 (51108069)

摘要: 从吉林石化污水处理厂的活性污泥中驯化、筛选获得一株降解效率高且生长速率快高效耐冷菌,命名为WS-5。该菌能以喹啉作为惟一的碳源、氮源及能源。结合菌体的形态观察、生理生化特性实验及16S rDNA 序列同源性对比分析,鉴定菌株WS-5为恶臭假单胞菌(Pseudomonas putida)。不同降解条件下的实验结果表明,菌株WS-5的最佳降解条件是投菌量为15%,pH值范围在8~10,摇床转速为100 r/min。最佳降解环境下对200 mg/L的喹啉在132 h降解率达到了85.3%。菌株WS-5对初始喹啉浓度为50、100、200和300 mg/L的初始喹啉浓度分别在36、72、192和262 h内完全降解。这将为今后在低温条件下处理含喹啉废水提供技术指导。

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回