底物浓度影响微生物燃料电池性能和生物生长的模拟研究

唐玉兰, 王娇, 赵景涛, 于燕, 孙一, 傅金祥. 底物浓度影响微生物燃料电池性能和生物生长的模拟研究[J]. 环境工程学报, 2013, 7(1): 137-142.
引用本文: 唐玉兰, 王娇, 赵景涛, 于燕, 孙一, 傅金祥. 底物浓度影响微生物燃料电池性能和生物生长的模拟研究[J]. 环境工程学报, 2013, 7(1): 137-142.
Tang Yulan, Wang Jiao, Zhao Jingtao, Yu Yan, Sun Yi, Fu Jinxiang. Simulation study on effect of substrate concentration on performance of MFC and biomass growth[J]. Chinese Journal of Environmental Engineering, 2013, 7(1): 137-142.
Citation: Tang Yulan, Wang Jiao, Zhao Jingtao, Yu Yan, Sun Yi, Fu Jinxiang. Simulation study on effect of substrate concentration on performance of MFC and biomass growth[J]. Chinese Journal of Environmental Engineering, 2013, 7(1): 137-142.

底物浓度影响微生物燃料电池性能和生物生长的模拟研究

  • 基金项目:

    国家自然科学基金资助项目(50876070)

  • 中图分类号: TM911.45

Simulation study on effect of substrate concentration on performance of MFC and biomass growth

  • Fund Project:
  • 摘要: 建立了含有悬浮微生物、电极上生物量、可溶性化学底物和中介体的微生物燃料电池(MFC)数学模型。通过底物降解、生物增长和电流产生过程的模拟,考察了生物量和底物随时间的变化规律,底物质量浓度对生物量、底物降解和电流的影响。结果表明,当溶液中初始微生物量很少时,随着MFC反应的进行,生物主要富集在电极上,溶液中生物生长缓慢;MFC中的生物生长经历延滞期、对数期和平稳期,底物分解经历缓慢、快速和消耗殆尽3个阶段。底物质量浓度小于等于250 mg/L时,生物延滞期时间、底物缓慢分解阶段时间、生物生长到达平稳时间、底物消耗殆尽的时间和电流到达最大值所需的时间随着底物质量浓度的增加而缩短。底物质量浓度大于250 mg/L时,生物延滞期时间、底物缓慢分解阶段时间、生物生长到达平稳时间、底物消耗殆尽的时间和电流到达最大值所需的时间随着底物质量浓度的增加而增加。
  • 加载中
  • [1] Heilmann Jenna,Logan Bruce E.Production of electricity from proteins using a microbial fuel cell.Water Environment Research, 2006,78(5):531-537
    [2] Bruce E.Logan. Microbial fuel cells.(微生物燃料电池). 北京:化学工业出版社,2009
    [3] Zhang X. C., Halme A.Modeling of a microbial fuel cell process. Biotechnol.Lett,1995,17(8): 809-814
    [4] Picioreanu C.,Katuri K.P. Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion. Water Science & Technology,2008,57(7):965-971
    [5] Picioreanu C., Head I. M., Katuri K.P.,et al. A computational model for biofilm-based microbial fuel cells. Water Research,2007, 41(13), 2921-2940
    [6] Picioreanu C., Loosdrecht M. C. M. van, Curtis T. P., et al. Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance. Bioelectrochemistry, 2010, 78(1):8-24
    [7] Cristian Picioreanu,Krishna P. Katuri. Modelling microbial fuel cells with suspended cells and added electrontransfer mediator.Electrochem,2010,40(1):151-162
    [8] Zeng Y., Choo Y. F., Kim B. H., et al. Modelling and simulation of two-chamber microbial fuel cell. Journal of Power Sources,2010, 195(1):79-89
    [9] Korneel Rabaey, Jorge Rodriguez, Linda L Blackall,et al.Microbial ecology meets electrochemistry:electricity-driven and driving communities. International Society for Microbial Ecology,2007,1(1):9-18
    [10] Chaudhuri S. K.,Levley D. R.Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.Nature Biotech,2003,21(10):1229-1232
    [11] Holmes D. E.,Bond D. R.Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments.Microbial Ecology,2004,48(2):178-190
    [12] Bond D. R.,Holmes D. R.,Tender L. M.,et al.Electrode reducing microorganisms that harvest energy from marine sediments. Science,2002,295(5554):483-485
    [13] Park H.S.,Kim B. H.,Kim H.S.,et al.A novel electrochemi cally active and Fe(Ⅲ)-reducing bacterium phylogenetically related to clostildium butyricam isolated from a microbial fuel cel1.Anaerobe,2001,399(7):297-306
    [14] Bruce E.Logan.Microbial fuel cell-challenges and application.Environmental Science & Technology,2006,40(17):5172-5180
    [15] Bond D. R.,Lovely D. R.Electricity production by geobacter sulfurreducens attached to electrodes.Appl. Environ. Microbial., 2003,69(3):1548-1555
    [16] Li Haoran,Lian Jing,Feng Yali,et al.Performance of a mediator-less microbial fuel cell.Journal of Chemical Engineering of Chinese Universities,2008,22(4):672-678
    [17] Aelterman P.,Freguia S.,Keller J., et al.The anode potential regulates baeterial activity in mierobial fuel cells.Appl. Mierobiol. Biotechnol.,2008,78(3):409-418
  • 加载中
计量
  • 文章访问数:  2235
  • HTML全文浏览数:  1060
  • PDF下载数:  1320
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-06-08
  • 刊出日期:  2013-01-16
唐玉兰, 王娇, 赵景涛, 于燕, 孙一, 傅金祥. 底物浓度影响微生物燃料电池性能和生物生长的模拟研究[J]. 环境工程学报, 2013, 7(1): 137-142.
引用本文: 唐玉兰, 王娇, 赵景涛, 于燕, 孙一, 傅金祥. 底物浓度影响微生物燃料电池性能和生物生长的模拟研究[J]. 环境工程学报, 2013, 7(1): 137-142.
Tang Yulan, Wang Jiao, Zhao Jingtao, Yu Yan, Sun Yi, Fu Jinxiang. Simulation study on effect of substrate concentration on performance of MFC and biomass growth[J]. Chinese Journal of Environmental Engineering, 2013, 7(1): 137-142.
Citation: Tang Yulan, Wang Jiao, Zhao Jingtao, Yu Yan, Sun Yi, Fu Jinxiang. Simulation study on effect of substrate concentration on performance of MFC and biomass growth[J]. Chinese Journal of Environmental Engineering, 2013, 7(1): 137-142.

底物浓度影响微生物燃料电池性能和生物生长的模拟研究

  • 1. 沈阳建筑大学市政与环境工程学院,沈阳 110168
基金项目:

国家自然科学基金资助项目(50876070)

摘要: 建立了含有悬浮微生物、电极上生物量、可溶性化学底物和中介体的微生物燃料电池(MFC)数学模型。通过底物降解、生物增长和电流产生过程的模拟,考察了生物量和底物随时间的变化规律,底物质量浓度对生物量、底物降解和电流的影响。结果表明,当溶液中初始微生物量很少时,随着MFC反应的进行,生物主要富集在电极上,溶液中生物生长缓慢;MFC中的生物生长经历延滞期、对数期和平稳期,底物分解经历缓慢、快速和消耗殆尽3个阶段。底物质量浓度小于等于250 mg/L时,生物延滞期时间、底物缓慢分解阶段时间、生物生长到达平稳时间、底物消耗殆尽的时间和电流到达最大值所需的时间随着底物质量浓度的增加而缩短。底物质量浓度大于250 mg/L时,生物延滞期时间、底物缓慢分解阶段时间、生物生长到达平稳时间、底物消耗殆尽的时间和电流到达最大值所需的时间随着底物质量浓度的增加而增加。

English Abstract

参考文献 (17)

返回顶部

目录

/

返回文章
返回