丝瓜络固定化非活性颤藻对Pb2+的吸附特性

冯伟, 王雪青, 张译丹, 才让卓玛, 张鑫璐, 秦清洲, 孙康函, 陈婷婷. 丝瓜络固定化非活性颤藻对Pb2+的吸附特性[J]. 环境化学, 2020, (4): 1129-1136. doi: 10.7524/j.issn.0254-6108.2019091004
引用本文: 冯伟, 王雪青, 张译丹, 才让卓玛, 张鑫璐, 秦清洲, 孙康函, 陈婷婷. 丝瓜络固定化非活性颤藻对Pb2+的吸附特性[J]. 环境化学, 2020, (4): 1129-1136. doi: 10.7524/j.issn.0254-6108.2019091004
FENG Wei, WANG Xueqing, ZHANG Yidan, CAI Rangzhuoma, ZHANG Xinlu, QIN Qingzhou, SUN Kanghan, CHEN Tingting. Biosorption characteristics of non-living Oscillatoria lutea immobilized in loofa sponge for removal of Pb2+[J]. Environmental Chemistry, 2020, (4): 1129-1136. doi: 10.7524/j.issn.0254-6108.2019091004
Citation: FENG Wei, WANG Xueqing, ZHANG Yidan, CAI Rangzhuoma, ZHANG Xinlu, QIN Qingzhou, SUN Kanghan, CHEN Tingting. Biosorption characteristics of non-living Oscillatoria lutea immobilized in loofa sponge for removal of Pb2+[J]. Environmental Chemistry, 2020, (4): 1129-1136. doi: 10.7524/j.issn.0254-6108.2019091004

丝瓜络固定化非活性颤藻对Pb2+的吸附特性

    通讯作者: 王雪青, E-mail: wxqing@tjcu.edu.cn
  • 基金项目:

    天津市自然科学基金重点项目(18JCZDJC98200),国家自然科学基金(31571834,31871811)和天津市大学生创新创业训练计划项目(201910069091,201910069175)资助.

Biosorption characteristics of non-living Oscillatoria lutea immobilized in loofa sponge for removal of Pb2+

    Corresponding author: WANG Xueqing, wxqing@tjcu.edu.cn
  • Fund Project: Supported by the Key Program for Natural Science Foundation of Tianjin (18JCZDJC98200), National Nature Science Foundation of China (31571834, 31871811) and Tianjin College Students' Innovation and Entrepreneurship Training Program (201910069091, 201910069175).
  • 摘要: 为研究丝瓜络固定化非活性颤藻对Pb2+的吸附特性,选择游离颤藻为对照,考察环境因素对吸附过程的影响以及吸附动力学、等温线和吸附机理.结果表明,固定化和游离颤藻分别在90 min和60 min 达到吸附平衡,与对照相比,吸附量增加了约20.6%;随着Pb2+浓度的增加,固定化和游离颤藻的吸附量逐渐增加,并在70 mg·L-1和60 mg·L-1时,分别达到吸附饱和;吸附量依赖于pH的变化,当pH5时吸附量达到最大;吸附过程符合准二级动力学模型;Langmuir 等温方程很好地描述了固定化和游离颤藻对Pb2+的吸附过程,属于单分子层吸附,饱和吸附量分别为87.82±1.51 mg·g-1和70.87±1.86 mg·g-1;傅里叶红外光谱(FTIR)和X射线能量色散光谱(EDS)分析表明,氨基、羧基、羰基和羟基与Pb2+的络合作用是固定化和游离颤藻的主要吸附机理.
  • 加载中
  • [1] MILOJKOVIĆ J V, MIHAJLOVIĆ M L, STOJANOVIĆ M D, et al. Pb(Ⅱ) removal from aqueous solution by Myriophyllum spicatum and its compost:Equilibrium, kinetic and thermodynamic study[J]. Journal of Chemical Technology and Biotechnology, 2014, 89(5):662-670.
    [2] MILOJKOVIĆ J V, LOPIČIĆ Z R, ANASTOPOULOS I P, et al. Performance of aquatic weed-waste Myriophyllum spicatum immobilized in alginate beads for the removal of Pb(Ⅱ)[J]. Journal of Environmental Management, 2019, 232:97-109.
    [3] AYANGBENRO A S, BABALOLA O O. A new strategy for heavy metal polluted environments:A review of microbial biosorbents[J]. International Journal of Environmental Research and Public Health, 2017, 14(1):94-109.
    [4] RAJESHWARI K, KUMAR M S, THAJUDDIN N. Adsorption isotherms for Cr (VI) by two immobilized marine cyanobacteria[J]. Annals of Microbiology, 2012, 62(1):241-246.
    [5] 董妍玲, 潘学武.从基因角度解读蓝藻细胞壁的结构和功能[J]. 生物学通报, 2010, 45(12):14-17.

    DONG Y L, PAN X W. Interpretation of the structure and function of cyanobacterial cell wall from a genetic perspective[J]. Bulletin of Biology, 2010, 45(12):14-17(in Chinese).

    [6] KATIRCIOĞLU H, BELMA A, TVRKER A R, et al. Removal of cadmium(Ⅱ) ion from aqueous system by dry biomass, immobilized live and heat-inactivated Oscillatoria sp. H1 isolated from freshwater (Mogan Lake)[J]. Bioresource Technology, 2008, 99(10):4185-4191.
    [7] KUMAR M S, RAJESHWARI K, JOHNSON S, et al. Removal of Pb (Ⅱ) by immobilized and free filaments of marine Oscillatoria sp. NTMS01 and Phormidium sp. NTMS02[J]. Bulletin of Environmental Contamination and Toxicology, 2011, 87(3):254-259.
    [8] 苗娟, 魏学锋, 贾晓平, 等. 3种包埋剂固定化硝化细菌的制备与性能[J].工业安全与环保, 2016, 42(11):61-63

    , 82. MIAO J, WEI X F, JIA X P, et al. Preparation and performance of immobilized nitrobacteria by three embedding materials[J]. Industrial Safety and Environmental Protection, 2016, 42(11):61-63, 82(in Chinese).

    [9] DE-BASHAN L E, BASHAN Y. Immobilized microalgae for removing pollutants:Review of practical aspects[J]. Bioresource Technology, 2010, 101(6):1611-1627.
    [10] LAM M K, LEE K T. Immobilization as a feasible method to simplify the separation of microalgae from water for biodiesel production[J]. Chemical Engineering Journal, 2012, 191:263-268.
    [11] SAEED A, IQBAL M. Loofa (Luffa cylindrica) sponge:Review of development of the biomatrix as a tool for biotechnological applications[J]. Biotechnology Progress, 2013, 29(3):573-600.
    [12] CHEN Y, ZHANG K, YUAN F, et al. Properties of two-variety natural luffa sponge columns as potential mattress filling materials[J]. Materials, 2018, 11(4):541-556.
    [13] AKHTAR N, IQBAL J, IQBAL M, et al. Removal and recovery of nickel(Ⅱ) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana:characterization studies[J]. Journal of Hazardous Materials, 2004, 108(1-2):85-94.
    [14] CHEN B Y, CHEN C Y, GUO W Q, et al. Fixed-bed biosorption of cadmium using immobilized Scenedesmus obliquus CNW-N cells on loofa (Luffa cylindrica) sponge[J]. Bioresource Technology, 2014, 160:175-181.
    [15] 王建龙, 陈灿. 重金属生物吸附[M]. 北京:科学出版社, 2015:56-57. WANG J L, CHEN C. Biosorption of heavy metals[M].Beijing:Science Press, 2015:56

    -57(in Chinese).

    [16] MANTZOROU A, NAVAKOUDIS E, PASCHALIDIS K, et al. Microalgae:A potential tool for remediating aquatic environments from toxic metals[J]. International Journal of Environmental Science and Technology, 2018, 15(8):1815-1830.
    [17]
    [18] 李绍卿, 李阳. 化学发光法测定铅的研究及其应用[J]. 中国非金属矿工业导刊, 1999(2):26-28. LI S Q, LI Y. Study and application on determination of lead by chemiluminescence[J]. China Nonmetallic Minerals Industry, 1999

    (2):26-28(in Chinese).

    [19] 肖芳芳, 张莹莹, 程建华, 等. 壳聚糖/磁性生物碳对重金属Cu(Ⅱ)的吸附性能[J]. 环境工程学报, 2019, 13(5):1048-1055.

    XIAO F F, ZHANG Y Y, CHENG J H, et al. Adsorption properties of chitosan/magnetic biochar for Cu (Ⅱ) removal from solution[J].Chinese Journal of Environmental Engineering, 2019, 13(5):1048-1055(in Chinese).

    [20] MIRANDA J, KRISHNAKUMAR G, GONSALVES R. Cr6+ bioremediation efficiency of Oscillatoria laete-virens (Crouan & Crouan) Gomont and Oscillatoria trichoides Szafer:Kinetics and equilibrium study[J]. Journal of Applied Phycology, 2012, 24(6):1439-1454.
    [21] SAEED A, IQBAL M. Immobilization of blue green microalgae on loofa sponge to biosorb cadmium in repeated shake flask batch and continuous flow fixed bed column reactor system[J]. World Journal of Microbiology and Biotechnology, 2005, 22(8):775-782.
    [22] AHMET S, MUSTAFA T. Biosorption of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution using green alga (Ulva lactuca) biomass[J]. Journal of Hazardous Materials, 2008, 152(1):302-308.
    [23] NASREEN A, MUHAMMAD I, IQBAL Z S, et al. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(Ⅲ)[J]. Journal of Environmental Sciences, 2008, 20(2):231-239.
    [24] MANTZOROU A, NAVAKOUDIS E, PASCHALIDIS K, et al. Microalgae:A potential tool for remediating aquatic environments from toxic metals[J]. International Journal of Environmental Science and Technology, 2018, 15(8):1815-1830.
    [25] 王建龙, 陈灿. 生物吸附法去除重金属离子的研究进展[J]. 环境科学学报, 2010, 30(4):673-701.

    WANG J L, CHEN C. Research advances in heavy metal removal by biosorption[J]. International Journal of Environmental Science and Technology, 2010, 30(4):673-701(in Chinese).

    [26] 唐登勇, 胡洁丽, 胥瑞晨, 等.芦苇生物炭对水中铅的吸附特性[J]. 环境化学, 2017, 36(9):1987-1996.

    TANG D Y, HU J L, XU R C, et al. Adsorption of lead onto reed biochar in aqueous solution[J]. Environmental Chemistry, 2017, 36(9):1987-1996(in Chinese).

    [27] 孙绪兵, 吴雪梅, 朱建发, 等. 羧基甲壳素对Pb(Ⅱ)的吸附性能及机理研究[J]. 中国环境科学, 2018, 38(8):220-230.

    SUN X B, WU X M, ZHU J F, et al. Adsorption performance and mechanism of Pb (Ⅱ) onto carboxylated chitin[J]. China Environmental Science, 2018, 38(8):220-230(in Chinese).

    [28] 张双杰, 邢宝林, 黄光许, 等.柚子皮水热炭对六价铬的吸附[J]. 环境工程学报, 2017, 11(5):2731-2737.

    ZHANG S J, XING B L, HUANG G X, et al. Adsorption of Cr (Ⅵ) by hydrothermal carbon from shaddock peel[J]. Chinese Journal of Environmental Engineering, 2017, 11(5):2731-2737(in Chinese).

    [29] SIBEL Y. The mechanism of heavy metal biosorption on green marine macroalga Enteromorpha linza[J]. Clean -Soil, Air, Water, 2014, 42(3):251-259.
    [30] 王志凯, 张胜利, 陈豪宇, 等. 磁性PEI功能化秸秆的制备及对Pb(Ⅱ)的吸附[J]. 环境科学研究, 2017, 30(8):1316-1324.

    WANG Z G, ZHANG S L, CHEN H Y, et al. Preparation of magnetic polyethyleneimine functionalized rice straw and its adsorption properties for Pb(Ⅱ) ions[J]. Research of Environmental Sciences, 2017, 30(8):1316-1324(in Chinese).

    [31] 崔晓霞, 张小丽, 唐焕威, 等.落叶松树皮活性物质提取及红外光谱分析[J]. 光谱学与光谱分析, 2012, 32(7):1810-1814.

    CUI X X, ZHANG X L, TANG H W, et al. Study on extracts of active substances from larch bark by FTIR Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2012, 32(7):1810-1814(in Chinese).

    [32] 杜作勇, 庹先国, 王彦惠, 等.腐殖酸对U(Ⅵ)的吸附机理研究[J]. 环境化学, 2019,38(8):1768-1774.

    DU Z Y, TUO X G, WANG H Y, et al. Adsorption mechanism of U(Ⅵ) by humic acid[J]. Environmental Chemistry, 2019,38(8):1768-1774(in Chinese).

    [33] 支田田.小球藻去除水体中Cr(Ⅵ)的机理及应用研究[D]. 杭州:浙江大学,2011. ZHI T T. Study on mechanism and application for hexavalent chromium removal by chlorella sp.[D]Hangzhou:Zhejiang University, 2011(in Chinese).
  • 加载中
计量
  • 文章访问数:  1140
  • HTML全文浏览数:  1140
  • PDF下载数:  29
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-10

丝瓜络固定化非活性颤藻对Pb2+的吸附特性

    通讯作者: 王雪青, E-mail: wxqing@tjcu.edu.cn
  • 1. 天津商业大学生物技术与食品科学学院, 天津, 300134;
  • 2. 天津市食品与生物技术重点实验室, 天津, 300134
基金项目:

天津市自然科学基金重点项目(18JCZDJC98200),国家自然科学基金(31571834,31871811)和天津市大学生创新创业训练计划项目(201910069091,201910069175)资助.

摘要: 为研究丝瓜络固定化非活性颤藻对Pb2+的吸附特性,选择游离颤藻为对照,考察环境因素对吸附过程的影响以及吸附动力学、等温线和吸附机理.结果表明,固定化和游离颤藻分别在90 min和60 min 达到吸附平衡,与对照相比,吸附量增加了约20.6%;随着Pb2+浓度的增加,固定化和游离颤藻的吸附量逐渐增加,并在70 mg·L-1和60 mg·L-1时,分别达到吸附饱和;吸附量依赖于pH的变化,当pH5时吸附量达到最大;吸附过程符合准二级动力学模型;Langmuir 等温方程很好地描述了固定化和游离颤藻对Pb2+的吸附过程,属于单分子层吸附,饱和吸附量分别为87.82±1.51 mg·g-1和70.87±1.86 mg·g-1;傅里叶红外光谱(FTIR)和X射线能量色散光谱(EDS)分析表明,氨基、羧基、羰基和羟基与Pb2+的络合作用是固定化和游离颤藻的主要吸附机理.

English Abstract

参考文献 (33)

目录

/

返回文章
返回