-
茜素黄R(alizarin yellow R,AYR),又名5-(4-硝基苯基偶氮)水杨酸,是一种水杨酸衍生物,属于水溶性阴离子偶氮类染料[1]. AYR被广泛用于化学检查中的pH指示剂和生物染色剂[2]. 由于其复杂的芳香族结构,稳定性强,降解难度大[3]. AYR降解过程中易形成二次污染物和有毒污泥,其在有氧和厌氧条件下都不可生物降解,传统废水处理工艺较难去除AYR[4]. 此外,AYR具有很高的毒性和致癌性,对生态系统和人类健康存在不利影响[1]. 因此,亟需找到一种能够高效去除水中AYR的技术.
迄今为止,吸附[5]、混凝[6]、膜过滤[7]、沉淀[8]和电化学处理[9]等已被证实能有效降解茜素染料,但对于AYR的去除鲜有报道. 近年来,基于硫酸根自由基(SO4−·)的过硫酸盐(persulfate,PS)高级氧化技术(Sulfate radical-based advanced oxidation processes,SR-AOPs)得到快速发展,与传统AOPs相比,SR-AOPs可产生选择性更高、半衰期更长的SO4−·[10]. PS不仅可以直接氧化降解污染物,还能够活化产生多种自由基[11],PS包括过一硫酸盐(Permonosulphate,PMS)和过二硫酸盐(Peroxodisulphates,PDS),PDS较PMS更稳定. 与·OH相比,SO4−·的氧化还原电位更高,即:E0(SO4−·/SO42−)=2.60—3.10 VNHE >E0(·OH/OH−)=1.90—2.70 VNHE. SR-AOPs优于传统AOPs[12],具体表现如下:(1)更高的自由基生成率[13];(2)激活的方法更广泛[14];(3)PDS运输和储存成本低廉[15].
微生物燃料电池(microbial fuel cell,MFCs)作为一种生物自发电装置受到广泛关注,常见的MFCs是由阳极室和阴极构组成,中间由质子交换膜(PEM)隔开[16]. 在阳极室微生物氧化有机物产生电子和质子;质子穿过PEM,而电子通过外部电路到达阴极室,从而形成完整的电回路[17]. MFCs处理含有偶氮染料的废水,是一种同时进行废水处理和能源生产的新兴技术. Liu等[18]使用偶氮染料作为MFCs的阴极电子受体,实验结果表明,在pH为3.0时,甲基橙(MO)、橙Ⅰ和橙Ⅱ等偶氮染料均可在被成功降解. Li等[19]对K2S2O8溶液的MFCs性能进行了评价,并与K3Fe(CN) 6溶液进行了比较,结果表明,PDS具有独特的自pH调节能力,可作为一种有效的阴极电子受体. Wang等[20]提出了一种在双室MFCs中投加K2S2O8-Fe2+体系作为新型阴极试剂,可有效提高阴极电位,K2S2O8-Fe2+物质的量比为2:1的MFC性能最佳. 综上所述,MFCs是一种有效的去除偶氮类染料的方式.
微生物脱盐燃料电池(microbial desalination fuel cells,MDCs)是在MFC的基础上发展演变而来,在阳极室与阴极室之间增加脱盐室,进行海水淡化[21]. MDCs使用阴阳离子交换膜取代PEM,成本降低[22]. 目前,使用PDS作为阴极电子受体与MDCs结合去除偶氮染料的报道较少. 本研究构建一个四室的MDCs,在阳极室和脱盐室中间增加缓冲室,阳极室产生的H+及脱盐室中的Cl-进入缓冲室,避免阳极室pH失衡,影响阳极微生物活性. 以PDS为阴极电子受体,提高AYR的脱色效率,同时达到去除阳极污染物及脱盐产电四位一体的效果. 本研究以AYR作为研究对象,对比了单独MDCs、单独PDS以及过硫酸盐阴极型MDCs去除水中AYR的效果,考察了不同溶液pH、PDS投加量、不同浓度共存阴离子以及有机物对降解效果的影响,、通过LC-MS检测结果分析了该工艺降解AYR的反应机理.
过硫酸盐阴极型微生物脱盐燃料电池降解茜素黄R
Degradation of alizarin yellow R using persulfate- cathode microbial desalination fuel cell
-
摘要: 茜素黄R(AYR)是一种广泛使用的阴离子偶氮类染料,长期存在于水环境中的AYR对生态系统和人类健康存在潜在威胁. 本研究在构建了一种过硫酸盐阴极型微生物脱盐燃料电池(MDCs)的基础上,系统研究了过硫酸盐阴极型MDCs降解AYR的动力学及机理. 分别探究了阴极初始pH值、过硫酸盐(PDS)投加量、共存阴离子和有机物等环境因素对AYR降解动力学的影响,同时分析了AYR的降解产物与降解机理. 结果表明,与单独MDCs和单独PDS相比,过硫酸盐阴极型MDCs能够快速高效地降解AYR,AYR的降解过程符合拟一级反应动力学模型. 在pH=3和PDS投加量为1 mmol·L−1时,AYR的降解速率常数(Kobs)最高;共存的阴离子对AYR的降解存在不同程度的促进或抑制效果;有机物腐殖酸及牛血清蛋白均抑制AYR的氧化降解. 反应120 min后,阴极反应液的TOC得到部分去除,AYR的主要降解机理包括偶氮键断裂、脱羧、苯环断裂及脱氮等多步反应.Abstract: Alizarin yellow R (AYR) is a commonly used anionic azo dye. The long-term presence of AYR in the aquatic environment poses a potential threat to ecosystems and human health. In this paper, on the basis of constructing a persulfate-cathode microbial desalination fuel cell (MDCs), the kinetics and mechanism of AYR degradation by persulfate-cathode MDCs were systematically investigated. The effects of environmental factors such as initial cathode pH, PDS dosage, coexisting anions, and organic matter on the kinetics of AYR degradation were investigated. Meanwhile the degradation products and mechanism of AYR were studied. The results demonstrated that persulfate-cathode MDCs can degrade AYR quickly and effectively compared with MDCs alone and PDS alone. The AYR degradation process followed pseudo first order reaction kinetics model. The degradation rate (Kobs) of AYR was highest with the pH=3 and 1 mmol·L−1 PDS dosage respectively. The coexisting anions had varying degrees of promoting or inhibiting effects on the degradation of AYR. Both organic humic acid and bovine serum protein inhibited the oxidative degradation of AYR. After 120 minutes of reaction, TOC was partially removed in the cathodic reaction solution, and multi-step reactions like azo bond breaking, decarboxylation, benzene ring breaking, and denitrification were the key mechanisms of AYR degradation.
-
Key words:
- alizarin yellow R /
- persulfate /
- microbial desalination fuel cell /
- kinetics /
- degradation mechanism.
-
表 1 茜素黄R的物化性质
Table 1. Physical and chemical properties of alizar in yellow R
名称
Compounds分子结构
Molecular structureCAS 分子量
Molecular weight溶解性
Solubility茜素黄R 2243 -76-7287.20 溶于水和乙醇 表 2 AYR降解中间产物分析
Table 2. Analysis of AYR degradation intermediates
分子式
Molecular formula质荷比
Mass spectral(m/z)可能结构式
Possible structural formulaC13H9N3O5 287.05 C13H9N3O3 257.08 C13H9N3O6 303.04 C12H10N3O4 272.06 C7H7NO3 153.04 C6H8N2 108.06 C7H6O3 138.03 C6H8NO6 193.06 C6H4N2O4 168.02 C6H9NO5 177.06 表 3 不同电子状态下AYR的Natural Population Analysis(NPA)电荷分布和计算的福井指数(f0)水平
Table 3. NPA charge distribution on AYR at different electron state and calculated Fukui index (f0) levels
原子
Atom序号
NumberqN qN+1 qN-1 f0 AYR N 15 − 0.0544 − 0.1456 0.109 0.1273 N 16 − 0.0723 −0.142 0.0963 0.1192 O 21 − 0.2092 − 0.2929 − 0.1672 0.0628 O 20 − 0.2101 − 0.2937 − 0.1689 0.0624 O 18 − 0.1803 − 0.2204 − 0.1321 0.0442 C 12 0.105 0.0603 0.1415 0.0406 C 2 0.0303 − 0.0092 0.0647 0.0369 C 4 − 0.0258 − 0.0651 0.0008 0.033 C 13 − 0.0476 − 0.0746 −0.009 0.0328 C 1 − 0.0248 − 0.0559 0.0032 0.0295 C 8 −0.029 − 0.0641 −0.006 0.029 O 14 − 0.2708 − 0.2972 − 0.2412 0.028 C 6 − 0.0125 − 0.0413 0.0123 0.0268 C 3 −0.031 − 0.0653 − 0.0135 0.0259 N 19 0.2446 0.2024 0.2538 0.0257 H 28 0.0559 0.035 0.0835 0.0243 C 11 − 0.0166 − 0.0485 − 0.0014 0.0236 C 10 − 0.0429 − 0.0624 − 0.0166 0.0229 H 22 0.0572 0.036 0.0794 0.0217 H 24 0.0575 0.0342 0.0776 0.0217 C 5 0.0398 0.0094 0.0518 0.0212 H 26 0.0537 0.0308 0.0708 0.02 H 23 0.0492 0.0293 0.0627 0.0167 H 29 0.2025 0.1869 0.2192 0.0162 C 9 0.0156 0.0077 0.0396 0.016 H 25 0.0562 0.0411 0.073 0.016 H 27 0.0516 0.0352 0.0668 0.0158 H 30 0.1486 0.1345 0.1644 0.015 O 17 − 0.1468 − 0.1592 − 0.1324 0.0134 C 7 0.2063 0.1946 0.2174 0.0114 -
[1] AHMED A, USMAN M, YU B, et al. Efficient photocatalytic degradation of toxic Alizarin yellow R dye from industrial wastewater using biosynthesized Fe nanoparticle and study of factors affecting the degradation rate[J]. Journal of Photochemistry and Photobiology. B, Biology, 2020, 202: 111682. doi: 10.1016/j.jphotobiol.2019.111682 [2] LI Z L, SUN K, CHEN F, et al. Efficient treatment of alizarin yellow R contained wastewater in an electrostimulated anaerobic-oxic integrated system[J]. Environmental Research, 2020, 185: 109403. doi: 10.1016/j.envres.2020.109403 [3] YADAV N G, CHAUDHARY L S, SAKHARE P A, et al. Impact of collected sunlight on ZnFe2O4 nanoparticles for photocatalytic application[J]. Journal of Colloid and Interface Science, 2018, 527: 289-297. doi: 10.1016/j.jcis.2018.05.051 [4] TAN H B, ZHANG Y B, LI B W, et al. Preparation of TiO2-coated glass flat membrane and its photocatalytic degradation of methylene blue[J]. Ceramics International, 2023, 49(11): 17236-17244. doi: 10.1016/j.ceramint.2023.02.089 [5] HADI P, GUO J X, BARFORD J, et al. Multilayer dye adsorption in activated carbons-facile approach to exploit vacant sites and interlayer charge interaction[J]. Environmental Science & Technology, 2016, 50(10): 5041-5049. [6] HADADI A, IMESSAOUDENE A, BOLLINGER J C, et al. Aleppo pine seeds (Pinus halepensis Mill. ) as a promising novel green coagulant for the removal of Congo red dye: Optimization via machine learning algorithm[J]. Journal of Environmental Management, 2023, 331: 117286. doi: 10.1016/j.jenvman.2023.117286 [7] CUI Z X, TIAN S N, LIU X L, et al. Electrospinning preparation of TPU/TiO2/PANI fiber membrane with enhanced dye degradation and photocatalytic Cr(VI) reduction[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 664: 131111. doi: 10.1016/j.colsurfa.2023.131111 [8] KUMAR P, THAKUR N, KUMAR K, et al. Photodegradation of methyl orange dye by using Azadirachta indica and chemically mediated synthesized cobalt doped α-Fe2O3 NPs through co-precipitation method[J]. Materials Today: Proceedings, 2023 [9] VENKATESAN S, CHEN Y Y, TENG H, et al. Enhanced adsorption on TiO2 photoelectrodes of dye-sensitized solar cells by electrochemical methods dye[J]. Journal of Alloys and Compounds, 2022, 903: 163959. doi: 10.1016/j.jallcom.2022.163959 [10] LIU H Z, BRUTON T A, DOYLE F M, et al. in situ chemical oxidation of contaminated groundwater by persulfate: Decomposition by Fe(Ⅲ)- and Mn(Ⅳ)-containing oxides and aquifer materials[J]. Environmental Science & Technology, 2014, 48(17): 10330-10336. [11] FANG G D, WU W H, LIU C, et al. Activation of persulfate with vanadium species for PCBs degradation: A mechanistic study[J]. Applied Catalysis B:Environmental, 2017, 202: 1-11. doi: 10.1016/j.apcatb.2016.09.006 [12] OH W D, DONG Z L, LIM T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects[J]. Applied Catalysis B:Environmental, 2016, 194: 169-201. doi: 10.1016/j.apcatb.2016.04.003 [13] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712. [14] LUTZE H V, BIRCHER S, RAPP I, et al. Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter[J]. Environmental Science & Technology, 2015, 49(3): 1673-1680. [15] GUERRA-RODRÍGUEZ S, RODRÍGUEZ E, SINGH D, et al. Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: A review[J]. Water, 2018, 10(12): 1828. doi: 10.3390/w10121828 [16] MAHMOODI NASRABADI A, MOGHIMI M. Experimental investigation of factors affecting the micro microbial fuel cells' main outputs[J]. Journal of Power Sources, 2023, 564: 232871. doi: 10.1016/j.jpowsour.2023.232871 [17] KOUAM IDA T, MANDAL B. Microbial fuel cell design, application and performance: A review[J]. Materials Today:Proceedings, 2023, 76: 88-94. doi: 10.1016/j.matpr.2022.10.131 [18] LIU L, LI F B, FENG C H, et al. Microbial fuel cell with an azo-dye-feeding cathode[J]. Applied Microbiology and Biotechnology, 2009, 85(1): 175-183. doi: 10.1007/s00253-009-2147-9 [19] LI J, FU Q, LIAO Q, et al. Persulfate: A self-activated cathodic electron acceptor for microbial fuel cells[J]. Journal of Power Sources, 2009, 194(1): 269-274. doi: 10.1016/j.jpowsour.2009.04.055 [20] WANG Y, NIU C G, ZENG G M, et al. Microbial fuel cell using ferrous ion activated persulfate as a cathodic reactant[J]. International Journal of Hydrogen Energy, 2011, 36(23): 15344-15351. doi: 10.1016/j.ijhydene.2011.08.071 [21] BORJAS Z, ESTEVE-NÚÑEZ A, ORTIZ J M. Strategies for merging microbial fuel cell technologies in water desalination processes: Start-up protocol and desalination efficiency assessment[J]. Journal of Power Sources, 2017, 356: 519-528. doi: 10.1016/j.jpowsour.2017.02.052 [22] 张慧超. 生物阴极微生物脱盐燃料电池驱动电容法深度除盐性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. ZHANG H C. Biocathode microbial desalination cell driven capacitive deionization for salt water desalination[D]. Harbin: Harbin Institute of Technology, 2015 (in Chinese).
[23] 徐成龙. 微生物脱盐电池性能优化及处理盐碱地淋洗水的实验研究[D]. 上海: 上海海洋大学, 2020. XU C L. Performance optimization of microbial desalination cells and treatment of washing water in coastal saline-alkali soil[D]. Shanghai: Shanghai Ocean University, 2020 (in Chinese).
[24] 董容莉, 梁燃燃, 滕洪辉. 微生物燃料电池性能参数及其评价方法[J]. 广州化工, 2015, 43(4): 28-29,41. doi: 10.3969/j.issn.1001-9677.2015.04.012 DONG R L, LIANG R R, TENG H H. The performance parameters of microbial fuel cell and their evaluation method[J]. Guangzhou Chemical Industry, 2015, 43(4): 28-29,41 (in Chinese). doi: 10.3969/j.issn.1001-9677.2015.04.012
[25] 黎嘉仪, 骆海萍, 袁也, 等. 不同阴极对微生物燃料电池产电性能的影响比较[J]. 环境工程学报, 2014, 8(8): 3143-3148. LI J Y, LUO H P, YUAN Y, et al. Comparison in performance of microbial fuel cells using different cathodes[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3143-3148 (in Chinese).
[26] 骆靖宇, 李学艳, 李青松, 等. 紫外活化过硫酸钠去除水体中的三氯卡班[J]. 中国环境科学, 2017, 37(9): 3324-3331. doi: 10.3969/j.issn.1000-6923.2017.09.015 LUO J Y, LI X Y, LI Q S, et al. Degradation of triclocarban aqueous solution through UV irradiation-activated sodium persulfate process[J]. China Environmental Science, 2017, 37(9): 3324-3331 (in Chinese). doi: 10.3969/j.issn.1000-6923.2017.09.015
[27] WANG X L, TONG Y P, FANG G D. Advances of single-atom catalysts for applications in persulfate-based advanced oxidation technologies[J]. Current Opinion in Chemical Engineering, 2021, 34: 100757. doi: 10.1016/j.coche.2021.100757 [28] WANG M M, WANG Y F, LI Y C, et al. Persulfate oxidation of tetracycline, antibiotic resistant bacteria, and resistance genes activated by Fe doped biochar catalysts: Synergy of radical and non-radical processes[J]. Chemical Engineering Journal, 2023, 464: 142558. doi: 10.1016/j.cej.2023.142558 [29] CHEN W S, HUANG C P. Mineralization of aniline in aqueous solution by electrochemical activation of persulfate[J]. Chemosphere, 2015, 125: 175-181. doi: 10.1016/j.chemosphere.2014.12.053 [30] 金春姬, 于辉, 刘明, 等. 利用过硫酸盐阴极型微生物燃料电池降解蒽醌燃料活性艳蓝的研究[J]. 中国海洋大学学报(自然科学版), 2015, 45(4): 85-94. JIN C J, YU H, LIU M, et al. Decolorization of an anthraquinone dye reactive brilliant blue KN-R in microbial fuel cells using ferrous catalyzed persulfate[J]. Periodical of Ocean University of China, 2015, 45(4): 85-94 (in Chinese).
[31] 冯俊生, 姚海祥, 蔡晨, 等. 微生物燃料电池电活化过硫酸盐降解甲基橙偶氮染料[J]. 环境科学研究, 2019, 32(5): 913-920. FENG J S, YAO H X, CAI C, et al. Microbial fuel cell electro-activated persulfate to degrade methyl orange azo dye[J]. Research of Environmental Sciences, 2019, 32(5): 913-920 (in Chinese).
[32] HAN J, ZENG H Y, XU S, et al. Catalytic properties of CuMgAlO catalyst and degradation mechanism in CWPO of methyl orange[J]. Applied Catalysis A:General, 2016, 527: 72-80. doi: 10.1016/j.apcata.2016.08.015 [33] 尹汉雄, 唐玉朝, 黄显怀, 等. 紫外光强化Fe(Ⅱ)-EDTA活化过硫酸盐降解直接耐酸大红4BS[J]. 环境科学研究, 2017, 30(7): 1105-1111. YIN H X, TANG Y C, HUANG X H, et al. Decolorization effect of direct fast scarlet 4BS by Fe (Ⅱ)-EDTA activated peroxodisulfate under ultraviolet light[J]. Research of Environmental Sciences, 2017, 30(7): 1105-1111 (in Chinese).
[34] FANG G D, DIONYSIOU D D, WANG Y, et al. Sulfate radical-based degradation of polychlorinated biphenyls: Effects of chloride ion and reaction kinetics[J]. Journal of Hazardous Materials, 2012, 227/228: 394-401. doi: 10.1016/j.jhazmat.2012.05.074 [35] 毕晨, 施周, 周石庆, 等. EGCG强化Fe2+/过硫酸盐体系降解金橙G的研究[J]. 中国环境科学, 2017, 37(10): 3722-3728. doi: 10.3969/j.issn.1000-6923.2017.10.013 BI C, SHI Z, ZHOU S Q, et al. Degradation of orange G by Fe2+/peroxydisulfate system with enhance of EGCG[J]. China Environmental Science, 2017, 37(10): 3722-3728 (in Chinese). doi: 10.3969/j.issn.1000-6923.2017.10.013
[36] 徐祥健. 基于羟基和硫酸根自由基的高级氧化技术降解有机污染物的研究[D]. 武汉: 武汉大学, 2019. XU X J. Hydroxyl radical-and sulfate radical-based advanced oxidation processes for the removal of organic pollutants[D]. Wuhan: Wuhan University, 2019 (in Chinese).
[37] 安琦, 刘建广. 基于羟基自由基或硫酸根自由基的高级氧化技术中溴酸盐形成与控制研究进展[J]. 净水技术, 2021, 40(12): 5-11,31. AN Q, LIU J G. Research progress of bromate formation and control in AOPs based on hydroxyl radical or sulfate radical[J]. Water Purification Technology, 2021, 40(12): 5-11,31 (in Chinese).
[38] 陈强, 王芳, 宋俊密, 等. 纳米TiO2光催化降解茜素黄R的反应机理与动力学[J]. 环境科学学报, 2009, 29(1): 175-180. doi: 10.3321/j.issn:0253-2468.2009.01.027 CHEN Q, WANG F, SONG J M, et al. Photocatalytic degradation of alizarin yellow R using TiO2 as catalyst: Mechanistic and kinetic investigations[J]. Acta Scientiae Circumstantiae, 2009, 29(1): 175-180 (in Chinese). doi: 10.3321/j.issn:0253-2468.2009.01.027
[39] ZHANG Y, HE P, JIA L P, et al. Ti/PbO2-Sm2O3 composite based electrode for highly efficient electrocatalytic degradation of alizarin yellow R[J]. Journal of Colloid and Interface Science, 2019, 533: 750-761. doi: 10.1016/j.jcis.2018.09.003 [40] ASOGWA F C, AGWAMBA E C, LOUIS H, et al. Structural benchmarking, density functional theory simulation, spectroscopic investigation and molecular docking of N-(1H-pyrrol-2-yl) methylene)-4-methylaniline as castration-resistant prostate cancer chemotherapeutic agent[J]. Chemical Physics Impact, 2022, 5: 100091. doi: 10.1016/j.chphi.2022.100091 [41] SHI J X, ZHANG B G, WANG W, et al. in situ produced hydrogen peroxide by biosynthesized Palladium nanoparticles and natural clay mineral for Highly-efficient Carbamazepine degradation[J]. Chemical Engineering Journal, 2021, 426: 131567. doi: 10.1016/j.cej.2021.131567