-
近年来,环境污染成为了遏制人类生存发展的关键问题之一,水体中难降解有机污染物尤其是新兴污染物(药物、个人护理产品、内分泌干扰物和消毒副产物等)严重威胁水生生态系统和人类的生命健康[1 − 4]. 因此,物理吸附[5]、生物处理[6]和高级氧化技术(AOPs)[7]等多种技术被广泛应用于废水中污染物的去除. 相比于其他方法,AOPs因其在去除有机污染物方面的巨大潜力而受到广泛关注,污染物可分解为低毒或无毒物质,甚至直接矿化成二氧化碳(CO2)和水(H2O)[8]. 传统的AOPs是以过氧化氢(H2O2)作为氧化剂,产生羟基自由基(·OH)降解有机污染物,基于硫酸根自由基(SO4•−)的高级氧化技术因其独特的优势被认为是一种很有前途的降解各种有机废水的处理方法. 与·OH相比,SO4•−具有更高的氧化还原电位、更强的选择性、更长的半衰期以及受pH值影响较小[9]. 通常,硫酸根自由基可通过活化过一硫酸盐(PMS)和过二硫酸盐(PDS)产生. 相比于PDS,PMS中的O-O键更容易被激活,有利于水中有机污染物降解. PMS活化方法多样,如加热[10]、紫外光[11]、碳材料[12]和过渡金属[13]等. 其中,以过渡金属为均相或非均相催化剂来活化PMS因其高效、低成本的优点成为近年来研究的热点.
过渡金属活化,包括Fe、Mn、Co、Ni、Ce、Cu等,在这些过渡金属中,铁元素由于低毒性、低成本以及优异的活化性能成为研究和使用最多的金属种类[14],但均相Fe2+/PMS体系存在催化剂回收困难、Fe2+/Fe3+转换率慢,易形成铁盐沉淀和造成二次污染等问题限制了其广泛应用[15],非均相单一铁元素催化剂也存在金属易团聚和金属离子浸出等问题[16]. 在单一铁元素的基础上,引入另外一种金属,制备成铁基非均相双金属催化剂. 首先,反应过程中金属离子浸出问题得到有效控制,延长了使用寿命,提高了催化剂的稳定性[16 − 17]. 其次,引入第二金属构建双金属催化剂可以有效地提高铁催化剂的催化性能,因为双金属的标准氧化还原电位的差异可以促进价态循环和电子转移,从而提高对PMS的活化性能[18 − 21]. 不同综述文献总结了铁基催化剂作为SR-AOPs活化剂在过硫酸盐高级氧化技术中的应用[22 − 25];Peng等[16]综述了尖晶石铁氧体及其复合物活化过一硫酸盐(PMS)降解有机污染物;Sun等[24]综述了尖晶石铁氧体纳米粒子及其纳米复合材料诱导过氧单硫酸盐活化去除有机污染物的应用;Kifle等[25]探讨了铁基双金属纳米结构异相活化过氧化物(过氧化氢、过一硫酸盐和过硫酸盐)用于污染水体的高效修复中的应用. 然而,针对不同铁基双金属催化剂修饰改性及其活化过一硫酸盐降解有机污染物机理的相关综述文献还相对较少.
本文概括了3种典型的铁基双金属催化剂的基本特征和其耦合PMS降解污染物的应用,并对铁基双金属催化剂常见的合成方法进行了介绍,梳理了铁基双金属催化剂的改性方法,简要分析铁基双金属催化剂活化PMS的机理. 最后,提出了铁基双金属催化剂在活化PMS有待深入研究的问题并对未来可能的发展方向进行展望,以期为将来铁基双金属催化剂耦合过一硫酸盐降解污染物的发展和应用提供有益的参考.
铁基双金属催化剂耦合过一硫酸盐去除污染物的研究进展
Research progress on the coupling of iron based bimetallic catalysts with peroxymonosulfate for pollutants removal
-
摘要: 水中难降解有机物对人体健康和生态环境存在潜在威胁,开发稳定、高效和低成本的催化体系对去除水中难降解有机物具有重要意义. 基于硫酸根自由基的高级氧化技术(SR-AOPs)因其氧化能力和适应性受到广泛关注. 铁基双金属催化剂由于能快速活化过一硫酸盐(PMS)而被认为是有效的催化剂,它弥补了单一铁元素催化剂活化效率低和容易产生二次污染等缺陷. 本文综述了铁基双金属催化剂的基本特征,介绍了铁基双金属催化剂的合成方法,并说明其改性方法,接着探讨铁基双金属活化PMS的机理. 最后,指出铁基双金属催化剂活化过一硫酸盐降解有机污染物面临的挑战和未来可能的发展方向.Abstract: Organic compounds in water pose a potential threat to human health and the ecological environment. Developing a stable, efficient, and low-cost catalytic systems is of great significance for the removal of refractory organic compounds in water. Sulfate radical-based advanced oxidation processes (SR-AOPs) have received intensive attention due to their oxidation capacity and adaptability. Iron based bimetallic catalysts have been regarded as effective catalysts due to their quick activation of peroxymonosulfate (PMS), which makes up for the defects of low activation efficiency and formation of secondary pollution of single iron catalysts. This paper provides a detailed overview of the fundamental characteristics of iron-based bimetallic catalysts, and introduces the latest research progress in the synthesis method and modification method of iron-based bimetallic catalysts. Moreover, the mechanisms of iron based bimetallic activation of PMS are explored in detail. Finally, the challenges and potential future development directions of PMS activation with iron based bimetallic catalysts for the degradation of organic pollutants are also discussed.
-
Key words:
- iron based bimetal /
- peroxymonosulfate /
- organic pollutants /
- mechanism.
-
表 1 铁基层状双金属氢氧化物及其复合物活化过一硫酸盐降解有机污染物性能
Table 1. Summary of iron-based LDHs composites activated peroxymonosulfate for the degradation of organic pollutants
催化剂
Catalyst污染物
Target pollutant浓度/(mg·L−1)Concentration 反应条件
Reaction conditions去除率/%
Removal参考文献
ReferencesFe-Mn-LDH 十八胺 10 [Cat.] = 0.4 g·L−1、[PMS] = 0.4 g·L−1、pH = 1.8、t = 25 min 85 [20] FeAl-LDH 双酚A 20 [Cat.] = 0.2 g·L−1、[PMS] = 0.2 g·L−1、pH = 5.58、t = 60 min 60 [38] CoFeLa-LDOs 四环素 30 [Cat.] = 0.05 g·L−1、[PMS] = 10 mmol·L−1、pH = 5.4、t = 10 min、 90.1 [39] CoFe-LDH 酸性红27 200 [Cat.] = 0.1 g·L−1、[PMS] = 0.2 g·L−1、pH = 6.7、t = 15 min 96.7 [40] MnFe-LDH 酸性橙7 20 [Cat.] = 0.2 g·L−1、[PMS] = 0.2 g·L−1、pH = 6.1、t = 30 min 97.56 [41] FeCo-LDH 罗丹明B 20 [Cat.] = 0.2 g·L−1、[PMS] = 0.15 g·L−1、pH = 3.4、t = 10 min 100 [42] BC-CoFeLDH 邻苯二甲酸二甲酯 10 [Cat.] = 0.3 g·L−1、[PMS] = 0.3 g·L−1、pH = 6.8、t = 60 min 100 [43] La/FeNi-LDH 四环素 20 [Cat.] = 0.04 g·L−1、[PMS] = 0.2 mmol·L−1、t = 60 min 84 [44] FeMg-LDH/BC 多西环素 30 [Cat.] = 0.75 g·L−1、[PMS] = 0.75 g·L−1、pH = 7.0、t = 120 min 88.76 [45] FeNi-LDH@BC 多西环素 35 [Cat.] = 0.5 g·L−1、[PMS] = 0.75 g·L−1、pH = 4.5、t = 120 min 88.1 [46] 表 2 常见铁基双金属催化剂的合成方法的优缺点
Table 2. Advantages and disadvantages of synthesis methods for common iron based bimetal catalysts
表 3 铁基双金属催化剂的合成方法及形貌和催化性能
Table 3. Synthesis methods, morphology, and catalytic performance of iron based bimetallic catalysts
催化剂
Catalyst合成方法
Synthesis method形貌
Morphology污染物及浓度
Pollutant and concentration反应条件
Reaction conditions降解率/%
Degradation参考文献
ReferencesFe-Ce@N-BC 浸渍-热解法 蜂窝状片层多孔结构 [甲硝唑] =
0.010 g·L−1[PMS] = 2 mmol·L−1、[Cat.] =
0.75 g·L−1、pH = 5.74、t = 60 min97.5 [17] p-Mn/Fe3O4 浸渍-热解法 立方体多孔结构 [双酚A] =
0.1 mmol·L−1[PMS] = 2 mmol·L−1、[Cat.] =
0.2 g·L−1、pH = 7.0、t = 30 min100 [52] CuFe2O4 溶胶-凝胶法 典型的介孔结构 [碘海醇] =
1.0 mg·L−1[PMS] = 20 mg·L−1、[Cat.] =
50 mg·L−1、pH = 7.0、t = 15 min95.0 [35] MnFe2O4@BC 溶胶-凝胶法 MnFe2O4微球均匀地锚定
在BC的表面和多孔
结构上[双酚A] =
20 mg·L−1[PMS] = 0.2 g·L−1、[Cat.] = 0.2 g·L−1、
pH = 7.0、t = 30 min100 [53] CoFe-LDH 共沉淀法 层状结构 [酸性红27] =
200 mg·L−1[PMS] = 0.2 g·L−1、[Cat.] = 0.1 g·L−1、
pH = 6.7、t = 15 min96.7 [40] CoFe2O4-EG 共沉淀法 小尺寸的CoFe2O4颗粒
不均匀地分散在EG表面,
增加了EG表面的粗糙度[磺胺甲恶唑] =
10 mg·L−1[PMS] = 2 mmol·L−1、[Cat.] =
0.6 g·L−1、pH = 6.0 ± 0.3、t = 20 min>99 [54] CoFe2O4 水热法 纳米颗粒,平均尺寸约为13nm [阿特拉津] =
10 mg·L−1[PMS] = 8 mmol·L−1、[Cat.] =
0.4 g·L−1、pH = 6.3、t = 30 min>99 [55] Co-Fe/SiO2 溶剂热法 层状薄片状结构 [环丙沙星] =
10 mg·L−1[PMS] = 1.6 mmol (0.50 g·L−1)、[Cat.] = 0.2 g·L−1、pH = 7.0 ± 0.2、t = 10 min 98 [56] 新型磁性锰铁碳化物(mMFC) 溶剂热和煅烧
相结合的方法棒状结构 [尼泊金丁酯] = 25.74 μmol [PMS] = 2 mmol、[Cat.] = 125 mg·L−1、pH = 6.83 ± 0.20、t = 75 min 100 [57] -
[1] YE B, WU Q Y, WANG W L, et al. PPCP degradation by ammonia/chlorine: Efficiency, radical species, and byproducts formation[J]. Water Research, 2023, 235: 119862. doi: 10.1016/j.watres.2023.119862 [2] JIN X W, WANG Y Y, JIN W, et al. Ecological risk of nonylphenol in China surface waters based on reproductive fitness[J]. Environmental Science & Technology, 2014, 48(2): 1256-1262. [3] ABRAHAM D G, LIBERATORE H K, AZIZ M T, et al. Impacts of hydraulic fracturing wastewater from oil and gas industries on drinking water: Quantification of 69 disinfection by-products and calculated toxicity[J]. Science of The Total Environment, 2023, 882: 163344. doi: 10.1016/j.scitotenv.2023.163344 [4] JAIN M, KHAN S A, SHARMA K, et al. Current perspective of innovative strategies for bioremediation of organic pollutants from wastewater[J]. Bioresource Technology, 2022, 344: 126305. doi: 10.1016/j.biortech.2021.126305 [5] LIN Y Z, ZHONG L B, DOU S, et al. Facile synthesis of electrospun carbon nanofiber/graphene oxide composite aerogels for high efficiency oils absorption[J]. Environment International, 2019, 128: 37-45. doi: 10.1016/j.envint.2019.04.019 [6] AHMED M B, ZHOU J L, NGO H H, et al. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review[J]. Journal of Hazardous Materials, 2017, 323: 274-298. doi: 10.1016/j.jhazmat.2016.04.045 [7] AMOR C, FERNANDES J R, LUCAS M S, et al. Hydroxyl and sulfate radical advanced oxidation processes: Application to an agro-industrial wastewater[J]. Environmental Technology & Innovation, 2021, 21: 101183. [8] ZHAO Q X, MAO Q M, ZHOU Y Y, et al. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications[J]. Chemosphere, 2017, 189: 224-238. doi: 10.1016/j.chemosphere.2017.09.042 [9] HU P D, LONG M C. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications[J]. Applied Catalysis B:Environmental, 2016, 181: 103-117. doi: 10.1016/j.apcatb.2015.07.024 [10] LIU Y X, WANG Y, WANG Q, et al. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS)[J]. Chemosphere, 2018, 190: 431-441. doi: 10.1016/j.chemosphere.2017.10.020 [11] ALAYANDE A B, HONG S. Ultraviolet light-activated peroxymonosulfate (UV/PMS) system for humic acid mineralization: Effects of ionic matrix and feasible application in seawater reverse osmosis desalination[J]. Environmental Pollution, 2022, 307: 119513. doi: 10.1016/j.envpol.2022.119513 [12] DO MINH T, NCIBI M C, SRIVASTAVA V, et al. Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants[J]. Applied Catalysis B:Environmental, 2019, 244: 367-384. doi: 10.1016/j.apcatb.2018.11.064 [13] WANG J Q, HASAER B, YANG M, et al. Anaerobically-digested sludge disintegration by transition metal ions-activated peroxymonosulfate (PMS): Comparison between Co2+, Cu2+, Fe2+ and Mn2+[J]. Science of The Total Environment, 2020, 713: 136530. doi: 10.1016/j.scitotenv.2020.136530 [14] RASTOGI A, AL-ABED S R, DIONYSIOU D D. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols[J]. Water Research, 2009, 43(3): 684-694. doi: 10.1016/j.watres.2008.10.045 [15] 张博, 黎素, 张扬, 等. 富氧空位MoO2强化Fe2+/过一硫酸盐体系降解四环素[J]. 环境科学学报, 2022, 42(11): 66-76. ZHANG B, LI S, ZHANG Y, et al. Oxygen vacancy-rich MoO2 strengthening the Fe2+/PMS system for the degradation of Tetracycline[J]. Acta Scientiae Circumstantiae, 2022, 42(11): 66-76 (in Chinese).
[16] PENG Y T, TANG H M, YAO B, et al. Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A Review[J]. Chemical Engineering Journal, 2021, 414: 128800. doi: 10.1016/j.cej.2021.128800 [17] XIAO K B, LIANG F W, LIANG J Z, et al. Magnetic bimetallic Fe, Ce-embedded N-enriched porous biochar for peroxymonosulfate activation in metronidazole degradation: Applications, mechanism insight and toxicity evaluation[J]. Chemical Engineering Journal, 2022, 433: 134387. doi: 10.1016/j.cej.2021.134387 [18] JI Q Q, LI J, XIONG Z K, et al. Enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate (PS) for p-nitrophenol (PNP) removal in aqueous solution[J]. Chemosphere, 2017, 172: 10-20. doi: 10.1016/j.chemosphere.2016.12.128 [19] HUANG G X, WANG C Y, YANG C W, et al. Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: Synergism between Mn and Fe[J]. Environmental Science & Technology, 2017, 51(21): 12611-12618. [20] CHEN G, NENGZI L C, LI B, et al. Octadecylamine degradation through catalytic activation of peroxymonosulfate by FeMn layered double hydroxide[J]. Science of The Total Environment, 2019, 695: 133963. doi: 10.1016/j.scitotenv.2019.133963 [21] GUO R N, CHEN Y, NENGZI L C, et al. In situ preparation of carbon-based Cu-Fe oxide nanoparticles from CuFe Prussian blue analogues for the photo-assisted heterogeneous peroxymonosulfate activation process to remove lomefloxacin[J]. Chemical Engineering Journal, 2020, 398: 125556. doi: 10.1016/j.cej.2020.125556 [22] XIAO S, CHENG M, ZHONG H, et al. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review[J]. Chemical Engineering Journal, 2020, 384: 123265. doi: 10.1016/j.cej.2019.123265 [23] ZHAO G Q, ZOU J, CHEN X Q, et al. Iron-based catalysts for persulfate-based advanced oxidation process: Microstructure, property and tailoring[J]. Chemical Engineering Journal, 2021, 421: 127845. doi: 10.1016/j.cej.2020.127845 [24] SUN J W, WU T, LIU Z F, et al. Peroxymonosulfate activation induced by spinel ferrite nanoparticles and their nanocomposites for organic pollutants removal: A review[J]. Journal of Cleaner Production, 2022, 346: 131143. doi: 10.1016/j.jclepro.2022.131143 [25] KIFLE G A, HUANG Y, XIANG M H, et al. Heterogeneous activation of peroxygens by iron-based bimetallic nanostructures for the efficient remediation of contaminated water. A review[J]. Chemical Engineering Journal, 2022, 442: 136187. doi: 10.1016/j.cej.2022.136187 [26] KEFENI K K, MAMBA B B. Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: Review[J]. Sustainable Materials and Technologies, 2020, 23: e00140. doi: 10.1016/j.susmat.2019.e00140 [27] ZHAO Q, YAN Z H, CHEN C C, et al. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond[J]. Chemical Reviews, 2017, 117(15): 10121-10211. doi: 10.1021/acs.chemrev.7b00051 [28] QIN H, HE Y Z, XU P, et al. Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field[J]. Advances in Colloid and Interface Science, 2021, 294: 102486. doi: 10.1016/j.cis.2021.102486 [29] WANG Y R, TIAN D F, CHU W, et al. Nanoscaled magnetic CuFe2O4 as an activator of peroxymonosulfate for the degradation of antibiotics norfloxacin[J]. Separation and Purification Technology, 2019, 212: 536-544. doi: 10.1016/j.seppur.2018.11.051 [30] KUSIGERSKI V, ILLES E, BLANUSA J, et al. Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by co-precipitation method[J]. Journal of Magnetism and Magnetic Materials, 2019, 475: 470-478. doi: 10.1016/j.jmmm.2018.11.127 [31] SUN B H, LI Q Q, ZHENG M H, et al. Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials: a review[J]. Environmental Pollution, 2020, 265: 114908. doi: 10.1016/j.envpol.2020.114908 [32] LATIF A, SHENG D, SUN K, et al. Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications[J]. Environmental Pollution, 2020, 264: 114728. doi: 10.1016/j.envpol.2020.114728 [33] REN Y M, LIN L Q, MA J, et al. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water[J]. Applied Catalysis B:Environmental, 2015, 165: 572-578. doi: 10.1016/j.apcatb.2014.10.051 [34] GUAN Y H, MA J, REN Y M, et al. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals[J]. Water Research, 2013, 47(14): 5431-5438. doi: 10.1016/j.watres.2013.06.023 [35] WANG S Y, CHEN Z L, YAN P W, et al. Enhanced degradation of iohexol in water by CuFe2O4 activated peroxymonosulfate: Efficiency, mechanism and degradation pathway[J]. Chemosphere, 2022, 289: 133198. doi: 10.1016/j.chemosphere.2021.133198 [36] KARIM A V, HASSANI A, EGHBALI P, et al. Nanostructured modified layered double hydroxides (LDHs)-based catalysts: A review on synthesis, characterization, and applications in water remediation by advanced oxidation processes[J]. Current Opinion in Solid State and Materials Science, 2022, 26(1): 100965. doi: 10.1016/j.cossms.2021.100965 [37] KOHANTORABI M, MOUSSAVI G, GIANNAKIS S. A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants[J]. Chemical Engineering Journal, 2021, 411: 127957. doi: 10.1016/j.cej.2020.127957 [38] YE Q Y, WU J Y, WU P X, et al. Enhancing peroxymonosulfate activation of Fe-Al layered double hydroxide by dissolved organic matter: Performance and mechanism[J]. Water Research, 2020, 185: 116246. doi: 10.1016/j.watres.2020.116246 [39] LI X G, HOU T L, YAN L G, et al. Efficient degradation of tetracycline by CoFeLa-layered double hydroxides catalyzed peroxymonosulfate: Synergistic effect of radical and nonradical pathways[J]. Journal of Hazardous Materials, 2020, 398: 122884. doi: 10.1016/j.jhazmat.2020.122884 [40] WANG Z W, TAN Y N, DUAN X G, et al. Pretreatment of membrane dye wastewater by CoFe-LDH-activated peroxymonosulfate: Performance, degradation pathway, and mechanism[J]. Chemosphere, 2023, 313: 137346. doi: 10.1016/j.chemosphere.2022.137346 [41] HOU L H, LI X M, YANG Q, et al. Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: Performance and mechanism for organic pollutant degradation[J]. Science of The Total Environment, 2019, 663: 453-464. doi: 10.1016/j.scitotenv.2019.01.190 [42] GONG C, CHEN F, YANG Q, et al. Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B[J]. Chemical Engineering Journal, 2017, 321: 222-232. doi: 10.1016/j.cej.2017.03.117 [43] YE Q Y, WU J Y, WU P X, et al. Enhancing peroxymonosulfate activation by Co-Fe layered double hydroxide catalysts via compositing with biochar[J]. Chemical Engineering Journal, 2021, 417: 129111. doi: 10.1016/j.cej.2021.129111 [44] WANG R Y, SU S N, REN X H, et al. Polyoxometalate intercalated La-doped NiFe-LDH for efficient removal of tetracycline via peroxymonosulfate activation[J]. Separation and Purification Technology, 2021, 274: 119113. doi: 10.1016/j.seppur.2021.119113 [45] MA R, YAN X Q, MI X H, et al. Enhanced catalytic degradation of aqueous doxycycline (DOX) in Mg-Fe-LDH@biochar composite-activated peroxymonosulfate system: Performances, degradation pathways, mechanisms and environmental implications[J]. Chemical Engineering Journal, 2021, 425: 131457. doi: 10.1016/j.cej.2021.131457 [46] MI X H, MA R, PU X C, et al. FeNi-layered double hydroxide (LDH)@biochar composite for , activation of peroxymonosulfate (PMS) towards enhanced degradation of doxycycline (DOX): Characterizations of the catalysts, catalytic performances, degradation pathways and mechanisms[J]. Journal of Cleaner Production, 2022, 378: 134514. [47] WU X Y, RU Y, BAI Y, et al. PBA composites and their derivatives in energy and environmental applications[J]. Coordination Chemistry Reviews, 2022, 451: 214260. doi: 10.1016/j.ccr.2021.214260 [48] ZHAO C X, LIU B, LI X N, et al. A Co-Fe Prussian blue analogue for efficient Fenton-like catalysis: the effect of high-spin cobalt[J]. Chemical Communications, 2019, 55(50): 7151-7154. doi: 10.1039/C9CC01872G [49] LI X N, WANG Z H, ZHANG B, et al. FexCo3-xO4 nanocages derived from nanoscale metal-organic frameworks for removal of bisphenol A by activation of peroxymonosulfate[J]. Applied Catalysis B:Environmental, 2016, 181: 788-799. doi: 10.1016/j.apcatb.2015.08.050 [50] ZENG H X, DENG L, YANG K H, et al. Degradation of sulfamethoxazole using peroxymonosulfate activated by self-sacrificed synthesized CoAl-LDH@CoFe-PBA nanosheet: Reactive oxygen species generation routes at acidic and alkaline pH[J]. Separation and Purification Technology, 2021, 268: 118654. doi: 10.1016/j.seppur.2021.118654 [51] PI Y Q, MA L J, ZHAO P, et al. Facile green synthetic graphene-based Co-Fe Prussian blue analogues as an activator of peroxymonosulfate for the degradation of levofloxacin hydrochloride[J]. Journal of Colloid and Interface Science, 2018, 526: 18-27. doi: 10.1016/j.jcis.2018.04.070 [52] DU J K, BAO J G, LIU Y, et al. Facile preparation of porous Mn/Fe3O4 cubes as peroxymonosulfate activating catalyst for effective bisphenol A degradation[J]. Chemical Engineering Journal, 2019, 376: 119193. doi: 10.1016/j.cej.2018.05.177 [53] XU S Y, WEN L T, YU C, et al. Activation of peroxymonosulfate by MnFe2O4@BC composite for bisphenol A Degradation: The coexisting of free-radical and non-radical pathways[J]. Chemical Engineering Journal, 2022, 442: 136250. doi: 10.1016/j.cej.2022.136250 [54] XU M J, LI J, YAN Y, et al. Catalytic degradation of sulfamethoxazole through peroxymonosulfate activated with expanded graphite loaded CoFe2O4 particles[J]. Chemical Engineering Journal, 2019, 369: 403-413. doi: 10.1016/j.cej.2019.03.075 [55] LI J, XU M J, YAO G, et al. Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: Kinetic, degradation intermediates, and toxicity evaluation[J]. Chemical Engineering Journal, 2018, 348: 1012-1024. doi: 10.1016/j.cej.2018.05.032 [56] ZHU S J, XU Y P, ZHU Z G, et al. Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation[J]. Chemical Engineering Journal, 2020, 384: 123298. doi: 10.1016/j.cej.2019.123298 [57] YANG J C E, LIN Y, PENG H H, et al. Novel magnetic rod-like Mn-Fe oxycarbide toward peroxymonosulfate activation for efficient oxidation of butyl paraben: Radical oxidation versus singlet oxygenation[J]. Applied Catalysis B:Environmental, 2020, 268: 118549. doi: 10.1016/j.apcatb.2019.118549 [58] 梁锦芝, 许伟城, 赖树锋, 等. 磁性生物炭的制备及其活化过一硫酸盐的研究进展[J]. 环境化学, 2021, 40(9): 2901-2911. doi: 10.7524/j.issn.0254-6108.2021022301 LIANG J Z, XU W C, LAI S F, et al. Research progress on preparation and peroxymonosulfate activation of magnetic biochar[J]. Environmental Chemistry, 2021, 40(9): 2901-2911 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021022301
[59] ZHU Z Q, ZHANG Q, XU M J, et al. Highly active heterogeneous FeCo metallic oxides for peroxymonosulfate activation: The mechanism of oxygen vacancy enhancement[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109071. doi: 10.1016/j.jece.2022.109071 [60] WU L Y, YU Y B, ZHANG Q, et al. A novel magnetic heterogeneous catalyst oxygen-defective CoFe2O4-x for activating peroxymonosulfate[J]. Applied Surface Science, 2019, 480: 717-726. doi: 10.1016/j.apsusc.2019.03.034 [61] XU Y S, ZHENG L L, YANG C, et al. Oxygen vacancies enabled porous SnO2 thin films for highly sensitive detection of triethylamine at room temperature[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20704-20713. [62] LONG X X, FENG C P, DING D H, et al. Oxygen vacancies-enriched CoFe2O4 for peroxymonosulfate activation: The reactivity between radical-nonradical coupling way and bisphenol A[J]. Journal of Hazardous Materials, 2021, 418: 126357. doi: 10.1016/j.jhazmat.2021.126357 [63] ZHOU Y B, ZHANG Y L, HU X M. Enhanced activation of peroxymonosulfate using oxygen vacancy-enriched FeCo2O4-x spinel for 2, 4-dichlorophenol removal: Singlet oxygen-dominated nonradical process[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 597: 124568. doi: 10.1016/j.colsurfa.2020.124568 [64] MA Q L, NENGZI L C, LI B, et al. Heterogeneously catalyzed persulfate with activated carbon coated with CoFe layered double hydroxide (AC@CoFe-LDH) for the degradation of lomefloxacin[J]. Separation and Purification Technology, 2020, 235: 116204. doi: 10.1016/j.seppur.2019.116204 [65] CHEN L W, DING D H, LIU C, et al. Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: A comparative study and mechanistic consideration[J]. Chemical Engineering Journal, 2018, 334: 273-284. doi: 10.1016/j.cej.2017.10.040 [66] WU D, ZHAO Y, XIA Q, et al. Bamboo-like nitrogen-doped carbon nanotubes on iron mesh for electrochemically-assisted catalytic oxidation[J]. Journal of Hazardous Materials, 2021, 408: 124899. doi: 10.1016/j.jhazmat.2020.124899 [67] DONG Z T, NIU C G, GUO H, et al. Anchoring CuFe2O4 nanoparticles into N-doped carbon nanosheets for peroxymonosulfate activation: Built-in electric field dominated radical and non-radical process[J]. Chemical Engineering Journal, 2021, 426: 130850. doi: 10.1016/j.cej.2021.130850 [68] SAHOO D P, NAYAK S, REDDY K H, et al. Fabrication of a Co(OH)2/ZnCr LDH “p-n” heterojunction photocatalyst with enhanced separation of charge carriers for efficient visible-light-driven H2 and O2 evolution[J]. Inorganic Chemistry, 2018, 57(7): 3840-3854. doi: 10.1021/acs.inorgchem.7b03213 [69] SAHOO D P, PATNAIK S, PARIDA K. An amine functionalized ZnCr LDH/MCM-41 nanocomposite as efficient visible light induced photocatalyst for Cr(VI) reduction[J]. Materials Today:Proceedings, 2021, 35: 252-257. doi: 10.1016/j.matpr.2020.05.526 [70] SUN Q N, WANG X J, LIU Y Y, et al. Visible-light-driven g-C3N4 doped CuFe2O4 floating catalyst enhanced peroxymonosulfate activation for sulfamethazine removal via singlet oxygen and high-valent metal-oxo species[J]. Chemical Engineering Journal, 2023, 455: 140198. doi: 10.1016/j.cej.2022.140198 [71] LI X F, CHEN T, QIU Y L, et al. Magnetic dual Z-scheme g-C3N4/BiVO4/CuFe2O4 heterojunction as an efficient visible-light-driven peroxymonosulfate activator for levofloxacin degradation[J]. Chemical Engineering Journal, 2023, 452: 139659. doi: 10.1016/j.cej.2022.139659 [72] PANG Y X, LEI H Y. Degradation of p-nitrophenol through microwave-assisted heterogeneous activation of peroxymonosulfate by manganese ferrite[J]. Chemical Engineering Journal, 2016, 287: 585-592. doi: 10.1016/j.cej.2015.11.076 [73] XU P, XIE S Q, LIU X, et al. Electrochemical enhanced heterogenous activation of peroxymonosulfate using CuFe2O4 particle electrodes for the degradation of diclofenac[J]. Chemical Engineering Journal, 2022, 446: 136941. doi: 10.1016/j.cej.2022.136941 [74] XU H D, QUAN X C, CHEN L. A novel combination of bioelectrochemical system with peroxymonosulfate oxidation for enhanced azo dye degradation and MnFe2O4 catalyst regeneration[J]. Chemosphere, 2019, 217: 800-807. doi: 10.1016/j.chemosphere.2018.11.077 [75] WU S H, YANG C P, LIN Y, et al. Efficient degradation of tetracycline by singlet oxygen-dominated peroxymonosulfate activation with magnetic nitrogen-doped porous carbon[J]. Journal of Environmental Sciences, 2022, 115: 330-340. doi: 10.1016/j.jes.2021.08.002 [76] ZHU S S, LI X J, KANG J, et al. Persulfate activation on crystallographic manganese oxides: Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants[J]. Environmental Science & Technology, 2019, 53(1): 307-315. [77] LI Y, MA S L, XU S J, et al. Novel magnetic biochar as an activator for peroxymonosulfate to degrade bisphenol A: Emphasizing the synergistic effect between graphitized structure and CoFe2O4[J]. Chemical Engineering Journal, 2020, 387: 124094. doi: 10.1016/j.cej.2020.124094 [78] REN W, XIONG L L, NIE G, et al. Insights into the electron-transfer regime of peroxydisulfate activation on carbon nanotubes: The role of oxygen functional groups[J]. Environmental Science & Technology, 2020, 54(2): 1267-1275. [79] LI X H, ZHAO Z H, LI H C, et al. Degradation of organic contaminants in the CoFe2O4/peroxymonosulfate process: The overlooked role of Co(II)-PMS complex[J]. Chemical Engineering Journal Advances, 2021, 8: 100143. doi: 10.1016/j.ceja.2021.100143 [80] ZHANG X J, ZHU X B, LI H, et al. Combination of peroxymonosulfate and Fe(Ⅵ) for enhanced degradation of sulfamethoxazole: The overlooked roles of high-valent iron species[J]. Chemical Engineering Journal, 2023, 453: 139742. doi: 10.1016/j.cej.2022.139742 [81] YANG L, WEI Z F, GUO Z H, et al. Significant roles of surface functional groups and Fe/Co redox reactions on peroxymonosulfate activation by hydrochar-supported cobalt ferrite for simultaneous degradation of monochlorobenzene and p-chloroaniline[J]. Journal of Hazardous Materials, 2023, 445: 130588. doi: 10.1016/j.jhazmat.2022.130588 [82] WANG Z, QIU W, PANG S Y, et al. Further understanding the involvement of Fe(IV) in peroxydisulfate and peroxymonosulfate activation by Fe(II) for oxidative water treatment[J]. Chemical Engineering Journal, 2019, 371: 842-847. doi: 10.1016/j.cej.2019.04.101