[1] YE B, WU Q Y, WANG W L, et al. PPCP degradation by ammonia/chlorine: Efficiency, radical species, and byproducts formation[J]. Water Research, 2023, 235: 119862. doi: 10.1016/j.watres.2023.119862
[2] JIN X W, WANG Y Y, JIN W, et al. Ecological risk of nonylphenol in China surface waters based on reproductive fitness[J]. Environmental Science & Technology, 2014, 48(2): 1256-1262.
[3] ABRAHAM D G, LIBERATORE H K, AZIZ M T, et al. Impacts of hydraulic fracturing wastewater from oil and gas industries on drinking water: Quantification of 69 disinfection by-products and calculated toxicity[J]. Science of The Total Environment, 2023, 882: 163344. doi: 10.1016/j.scitotenv.2023.163344
[4] JAIN M, KHAN S A, SHARMA K, et al. Current perspective of innovative strategies for bioremediation of organic pollutants from wastewater[J]. Bioresource Technology, 2022, 344: 126305. doi: 10.1016/j.biortech.2021.126305
[5] LIN Y Z, ZHONG L B, DOU S, et al. Facile synthesis of electrospun carbon nanofiber/graphene oxide composite aerogels for high efficiency oils absorption[J]. Environment International, 2019, 128: 37-45. doi: 10.1016/j.envint.2019.04.019
[6] AHMED M B, ZHOU J L, NGO H H, et al. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review[J]. Journal of Hazardous Materials, 2017, 323: 274-298. doi: 10.1016/j.jhazmat.2016.04.045
[7] AMOR C, FERNANDES J R, LUCAS M S, et al. Hydroxyl and sulfate radical advanced oxidation processes: Application to an agro-industrial wastewater[J]. Environmental Technology & Innovation, 2021, 21: 101183.
[8] ZHAO Q X, MAO Q M, ZHOU Y Y, et al. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications[J]. Chemosphere, 2017, 189: 224-238. doi: 10.1016/j.chemosphere.2017.09.042
[9] HU P D, LONG M C. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications[J]. Applied Catalysis B:Environmental, 2016, 181: 103-117. doi: 10.1016/j.apcatb.2015.07.024
[10] LIU Y X, WANG Y, WANG Q, et al. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS)[J]. Chemosphere, 2018, 190: 431-441. doi: 10.1016/j.chemosphere.2017.10.020
[11] ALAYANDE A B, HONG S. Ultraviolet light-activated peroxymonosulfate (UV/PMS) system for humic acid mineralization: Effects of ionic matrix and feasible application in seawater reverse osmosis desalination[J]. Environmental Pollution, 2022, 307: 119513. doi: 10.1016/j.envpol.2022.119513
[12] DO MINH T, NCIBI M C, SRIVASTAVA V, et al. Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants[J]. Applied Catalysis B:Environmental, 2019, 244: 367-384. doi: 10.1016/j.apcatb.2018.11.064
[13] WANG J Q, HASAER B, YANG M, et al. Anaerobically-digested sludge disintegration by transition metal ions-activated peroxymonosulfate (PMS): Comparison between Co2+, Cu2+, Fe2+ and Mn2+[J]. Science of The Total Environment, 2020, 713: 136530. doi: 10.1016/j.scitotenv.2020.136530
[14] RASTOGI A, AL-ABED S R, DIONYSIOU D D. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols[J]. Water Research, 2009, 43(3): 684-694. doi: 10.1016/j.watres.2008.10.045
[15] 张博, 黎素, 张扬, 等. 富氧空位MoO2强化Fe2+/过一硫酸盐体系降解四环素[J]. 环境科学学报, 2022, 42(11): 66-76. ZHANG B, LI S, ZHANG Y, et al. Oxygen vacancy-rich MoO2 strengthening the Fe2+/PMS system for the degradation of Tetracycline[J]. Acta Scientiae Circumstantiae, 2022, 42(11): 66-76 (in Chinese).
[16] PENG Y T, TANG H M, YAO B, et al. Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A Review[J]. Chemical Engineering Journal, 2021, 414: 128800. doi: 10.1016/j.cej.2021.128800
[17] XIAO K B, LIANG F W, LIANG J Z, et al. Magnetic bimetallic Fe, Ce-embedded N-enriched porous biochar for peroxymonosulfate activation in metronidazole degradation: Applications, mechanism insight and toxicity evaluation[J]. Chemical Engineering Journal, 2022, 433: 134387. doi: 10.1016/j.cej.2021.134387
[18] JI Q Q, LI J, XIONG Z K, et al. Enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate (PS) for p-nitrophenol (PNP) removal in aqueous solution[J]. Chemosphere, 2017, 172: 10-20. doi: 10.1016/j.chemosphere.2016.12.128
[19] HUANG G X, WANG C Y, YANG C W, et al. Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: Synergism between Mn and Fe[J]. Environmental Science & Technology, 2017, 51(21): 12611-12618.
[20] CHEN G, NENGZI L C, LI B, et al. Octadecylamine degradation through catalytic activation of peroxymonosulfate by FeMn layered double hydroxide[J]. Science of The Total Environment, 2019, 695: 133963. doi: 10.1016/j.scitotenv.2019.133963
[21] GUO R N, CHEN Y, NENGZI L C, et al. In situ preparation of carbon-based Cu-Fe oxide nanoparticles from CuFe Prussian blue analogues for the photo-assisted heterogeneous peroxymonosulfate activation process to remove lomefloxacin[J]. Chemical Engineering Journal, 2020, 398: 125556. doi: 10.1016/j.cej.2020.125556
[22] XIAO S, CHENG M, ZHONG H, et al. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review[J]. Chemical Engineering Journal, 2020, 384: 123265. doi: 10.1016/j.cej.2019.123265
[23] ZHAO G Q, ZOU J, CHEN X Q, et al. Iron-based catalysts for persulfate-based advanced oxidation process: Microstructure, property and tailoring[J]. Chemical Engineering Journal, 2021, 421: 127845. doi: 10.1016/j.cej.2020.127845
[24] SUN J W, WU T, LIU Z F, et al. Peroxymonosulfate activation induced by spinel ferrite nanoparticles and their nanocomposites for organic pollutants removal: A review[J]. Journal of Cleaner Production, 2022, 346: 131143. doi: 10.1016/j.jclepro.2022.131143
[25] KIFLE G A, HUANG Y, XIANG M H, et al. Heterogeneous activation of peroxygens by iron-based bimetallic nanostructures for the efficient remediation of contaminated water. A review[J]. Chemical Engineering Journal, 2022, 442: 136187. doi: 10.1016/j.cej.2022.136187
[26] KEFENI K K, MAMBA B B. Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: Review[J]. Sustainable Materials and Technologies, 2020, 23: e00140. doi: 10.1016/j.susmat.2019.e00140
[27] ZHAO Q, YAN Z H, CHEN C C, et al. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond[J]. Chemical Reviews, 2017, 117(15): 10121-10211. doi: 10.1021/acs.chemrev.7b00051
[28] QIN H, HE Y Z, XU P, et al. Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field[J]. Advances in Colloid and Interface Science, 2021, 294: 102486. doi: 10.1016/j.cis.2021.102486
[29] WANG Y R, TIAN D F, CHU W, et al. Nanoscaled magnetic CuFe2O4 as an activator of peroxymonosulfate for the degradation of antibiotics norfloxacin[J]. Separation and Purification Technology, 2019, 212: 536-544. doi: 10.1016/j.seppur.2018.11.051
[30] KUSIGERSKI V, ILLES E, BLANUSA J, et al. Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by co-precipitation method[J]. Journal of Magnetism and Magnetic Materials, 2019, 475: 470-478. doi: 10.1016/j.jmmm.2018.11.127
[31] SUN B H, LI Q Q, ZHENG M H, et al. Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials: a review[J]. Environmental Pollution, 2020, 265: 114908. doi: 10.1016/j.envpol.2020.114908
[32] LATIF A, SHENG D, SUN K, et al. Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications[J]. Environmental Pollution, 2020, 264: 114728. doi: 10.1016/j.envpol.2020.114728
[33] REN Y M, LIN L Q, MA J, et al. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water[J]. Applied Catalysis B:Environmental, 2015, 165: 572-578. doi: 10.1016/j.apcatb.2014.10.051
[34] GUAN Y H, MA J, REN Y M, et al. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals[J]. Water Research, 2013, 47(14): 5431-5438. doi: 10.1016/j.watres.2013.06.023
[35] WANG S Y, CHEN Z L, YAN P W, et al. Enhanced degradation of iohexol in water by CuFe2O4 activated peroxymonosulfate: Efficiency, mechanism and degradation pathway[J]. Chemosphere, 2022, 289: 133198. doi: 10.1016/j.chemosphere.2021.133198
[36] KARIM A V, HASSANI A, EGHBALI P, et al. Nanostructured modified layered double hydroxides (LDHs)-based catalysts: A review on synthesis, characterization, and applications in water remediation by advanced oxidation processes[J]. Current Opinion in Solid State and Materials Science, 2022, 26(1): 100965. doi: 10.1016/j.cossms.2021.100965
[37] KOHANTORABI M, MOUSSAVI G, GIANNAKIS S. A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants[J]. Chemical Engineering Journal, 2021, 411: 127957. doi: 10.1016/j.cej.2020.127957
[38] YE Q Y, WU J Y, WU P X, et al. Enhancing peroxymonosulfate activation of Fe-Al layered double hydroxide by dissolved organic matter: Performance and mechanism[J]. Water Research, 2020, 185: 116246. doi: 10.1016/j.watres.2020.116246
[39] LI X G, HOU T L, YAN L G, et al. Efficient degradation of tetracycline by CoFeLa-layered double hydroxides catalyzed peroxymonosulfate: Synergistic effect of radical and nonradical pathways[J]. Journal of Hazardous Materials, 2020, 398: 122884. doi: 10.1016/j.jhazmat.2020.122884
[40] WANG Z W, TAN Y N, DUAN X G, et al. Pretreatment of membrane dye wastewater by CoFe-LDH-activated peroxymonosulfate: Performance, degradation pathway, and mechanism[J]. Chemosphere, 2023, 313: 137346. doi: 10.1016/j.chemosphere.2022.137346
[41] HOU L H, LI X M, YANG Q, et al. Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: Performance and mechanism for organic pollutant degradation[J]. Science of The Total Environment, 2019, 663: 453-464. doi: 10.1016/j.scitotenv.2019.01.190
[42] GONG C, CHEN F, YANG Q, et al. Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B[J]. Chemical Engineering Journal, 2017, 321: 222-232. doi: 10.1016/j.cej.2017.03.117
[43] YE Q Y, WU J Y, WU P X, et al. Enhancing peroxymonosulfate activation by Co-Fe layered double hydroxide catalysts via compositing with biochar[J]. Chemical Engineering Journal, 2021, 417: 129111. doi: 10.1016/j.cej.2021.129111
[44] WANG R Y, SU S N, REN X H, et al. Polyoxometalate intercalated La-doped NiFe-LDH for efficient removal of tetracycline via peroxymonosulfate activation[J]. Separation and Purification Technology, 2021, 274: 119113. doi: 10.1016/j.seppur.2021.119113
[45] MA R, YAN X Q, MI X H, et al. Enhanced catalytic degradation of aqueous doxycycline (DOX) in Mg-Fe-LDH@biochar composite-activated peroxymonosulfate system: Performances, degradation pathways, mechanisms and environmental implications[J]. Chemical Engineering Journal, 2021, 425: 131457. doi: 10.1016/j.cej.2021.131457
[46] MI X H, MA R, PU X C, et al. FeNi-layered double hydroxide (LDH)@biochar composite for , activation of peroxymonosulfate (PMS) towards enhanced degradation of doxycycline (DOX): Characterizations of the catalysts, catalytic performances, degradation pathways and mechanisms[J]. Journal of Cleaner Production, 2022, 378: 134514.
[47] WU X Y, RU Y, BAI Y, et al. PBA composites and their derivatives in energy and environmental applications[J]. Coordination Chemistry Reviews, 2022, 451: 214260. doi: 10.1016/j.ccr.2021.214260
[48] ZHAO C X, LIU B, LI X N, et al. A Co-Fe Prussian blue analogue for efficient Fenton-like catalysis: the effect of high-spin cobalt[J]. Chemical Communications, 2019, 55(50): 7151-7154. doi: 10.1039/C9CC01872G
[49] LI X N, WANG Z H, ZHANG B, et al. FexCo3-xO4 nanocages derived from nanoscale metal-organic frameworks for removal of bisphenol A by activation of peroxymonosulfate[J]. Applied Catalysis B:Environmental, 2016, 181: 788-799. doi: 10.1016/j.apcatb.2015.08.050
[50] ZENG H X, DENG L, YANG K H, et al. Degradation of sulfamethoxazole using peroxymonosulfate activated by self-sacrificed synthesized CoAl-LDH@CoFe-PBA nanosheet: Reactive oxygen species generation routes at acidic and alkaline pH[J]. Separation and Purification Technology, 2021, 268: 118654. doi: 10.1016/j.seppur.2021.118654
[51] PI Y Q, MA L J, ZHAO P, et al. Facile green synthetic graphene-based Co-Fe Prussian blue analogues as an activator of peroxymonosulfate for the degradation of levofloxacin hydrochloride[J]. Journal of Colloid and Interface Science, 2018, 526: 18-27. doi: 10.1016/j.jcis.2018.04.070
[52] DU J K, BAO J G, LIU Y, et al. Facile preparation of porous Mn/Fe3O4 cubes as peroxymonosulfate activating catalyst for effective bisphenol A degradation[J]. Chemical Engineering Journal, 2019, 376: 119193. doi: 10.1016/j.cej.2018.05.177
[53] XU S Y, WEN L T, YU C, et al. Activation of peroxymonosulfate by MnFe2O4@BC composite for bisphenol A Degradation: The coexisting of free-radical and non-radical pathways[J]. Chemical Engineering Journal, 2022, 442: 136250. doi: 10.1016/j.cej.2022.136250
[54] XU M J, LI J, YAN Y, et al. Catalytic degradation of sulfamethoxazole through peroxymonosulfate activated with expanded graphite loaded CoFe2O4 particles[J]. Chemical Engineering Journal, 2019, 369: 403-413. doi: 10.1016/j.cej.2019.03.075
[55] LI J, XU M J, YAO G, et al. Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: Kinetic, degradation intermediates, and toxicity evaluation[J]. Chemical Engineering Journal, 2018, 348: 1012-1024. doi: 10.1016/j.cej.2018.05.032
[56] ZHU S J, XU Y P, ZHU Z G, et al. Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation[J]. Chemical Engineering Journal, 2020, 384: 123298. doi: 10.1016/j.cej.2019.123298
[57] YANG J C E, LIN Y, PENG H H, et al. Novel magnetic rod-like Mn-Fe oxycarbide toward peroxymonosulfate activation for efficient oxidation of butyl paraben: Radical oxidation versus singlet oxygenation[J]. Applied Catalysis B:Environmental, 2020, 268: 118549. doi: 10.1016/j.apcatb.2019.118549
[58] 梁锦芝, 许伟城, 赖树锋, 等. 磁性生物炭的制备及其活化过一硫酸盐的研究进展[J]. 环境化学, 2021, 40(9): 2901-2911. doi: 10.7524/j.issn.0254-6108.2021022301 LIANG J Z, XU W C, LAI S F, et al. Research progress on preparation and peroxymonosulfate activation of magnetic biochar[J]. Environmental Chemistry, 2021, 40(9): 2901-2911 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021022301
[59] ZHU Z Q, ZHANG Q, XU M J, et al. Highly active heterogeneous FeCo metallic oxides for peroxymonosulfate activation: The mechanism of oxygen vacancy enhancement[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109071. doi: 10.1016/j.jece.2022.109071
[60] WU L Y, YU Y B, ZHANG Q, et al. A novel magnetic heterogeneous catalyst oxygen-defective CoFe2O4-x for activating peroxymonosulfate[J]. Applied Surface Science, 2019, 480: 717-726. doi: 10.1016/j.apsusc.2019.03.034
[61] XU Y S, ZHENG L L, YANG C, et al. Oxygen vacancies enabled porous SnO2 thin films for highly sensitive detection of triethylamine at room temperature[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20704-20713.
[62] LONG X X, FENG C P, DING D H, et al. Oxygen vacancies-enriched CoFe2O4 for peroxymonosulfate activation: The reactivity between radical-nonradical coupling way and bisphenol A[J]. Journal of Hazardous Materials, 2021, 418: 126357. doi: 10.1016/j.jhazmat.2021.126357
[63] ZHOU Y B, ZHANG Y L, HU X M. Enhanced activation of peroxymonosulfate using oxygen vacancy-enriched FeCo2O4-x spinel for 2, 4-dichlorophenol removal: Singlet oxygen-dominated nonradical process[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 597: 124568. doi: 10.1016/j.colsurfa.2020.124568
[64] MA Q L, NENGZI L C, LI B, et al. Heterogeneously catalyzed persulfate with activated carbon coated with CoFe layered double hydroxide (AC@CoFe-LDH) for the degradation of lomefloxacin[J]. Separation and Purification Technology, 2020, 235: 116204. doi: 10.1016/j.seppur.2019.116204
[65] CHEN L W, DING D H, LIU C, et al. Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: A comparative study and mechanistic consideration[J]. Chemical Engineering Journal, 2018, 334: 273-284. doi: 10.1016/j.cej.2017.10.040
[66] WU D, ZHAO Y, XIA Q, et al. Bamboo-like nitrogen-doped carbon nanotubes on iron mesh for electrochemically-assisted catalytic oxidation[J]. Journal of Hazardous Materials, 2021, 408: 124899. doi: 10.1016/j.jhazmat.2020.124899
[67] DONG Z T, NIU C G, GUO H, et al. Anchoring CuFe2O4 nanoparticles into N-doped carbon nanosheets for peroxymonosulfate activation: Built-in electric field dominated radical and non-radical process[J]. Chemical Engineering Journal, 2021, 426: 130850. doi: 10.1016/j.cej.2021.130850
[68] SAHOO D P, NAYAK S, REDDY K H, et al. Fabrication of a Co(OH)2/ZnCr LDH “p-n” heterojunction photocatalyst with enhanced separation of charge carriers for efficient visible-light-driven H2 and O2 evolution[J]. Inorganic Chemistry, 2018, 57(7): 3840-3854. doi: 10.1021/acs.inorgchem.7b03213
[69] SAHOO D P, PATNAIK S, PARIDA K. An amine functionalized ZnCr LDH/MCM-41 nanocomposite as efficient visible light induced photocatalyst for Cr(VI) reduction[J]. Materials Today:Proceedings, 2021, 35: 252-257. doi: 10.1016/j.matpr.2020.05.526
[70] SUN Q N, WANG X J, LIU Y Y, et al. Visible-light-driven g-C3N4 doped CuFe2O4 floating catalyst enhanced peroxymonosulfate activation for sulfamethazine removal via singlet oxygen and high-valent metal-oxo species[J]. Chemical Engineering Journal, 2023, 455: 140198. doi: 10.1016/j.cej.2022.140198
[71] LI X F, CHEN T, QIU Y L, et al. Magnetic dual Z-scheme g-C3N4/BiVO4/CuFe2O4 heterojunction as an efficient visible-light-driven peroxymonosulfate activator for levofloxacin degradation[J]. Chemical Engineering Journal, 2023, 452: 139659. doi: 10.1016/j.cej.2022.139659
[72] PANG Y X, LEI H Y. Degradation of p-nitrophenol through microwave-assisted heterogeneous activation of peroxymonosulfate by manganese ferrite[J]. Chemical Engineering Journal, 2016, 287: 585-592. doi: 10.1016/j.cej.2015.11.076
[73] XU P, XIE S Q, LIU X, et al. Electrochemical enhanced heterogenous activation of peroxymonosulfate using CuFe2O4 particle electrodes for the degradation of diclofenac[J]. Chemical Engineering Journal, 2022, 446: 136941. doi: 10.1016/j.cej.2022.136941
[74] XU H D, QUAN X C, CHEN L. A novel combination of bioelectrochemical system with peroxymonosulfate oxidation for enhanced azo dye degradation and MnFe2O4 catalyst regeneration[J]. Chemosphere, 2019, 217: 800-807. doi: 10.1016/j.chemosphere.2018.11.077
[75] WU S H, YANG C P, LIN Y, et al. Efficient degradation of tetracycline by singlet oxygen-dominated peroxymonosulfate activation with magnetic nitrogen-doped porous carbon[J]. Journal of Environmental Sciences, 2022, 115: 330-340. doi: 10.1016/j.jes.2021.08.002
[76] ZHU S S, LI X J, KANG J, et al. Persulfate activation on crystallographic manganese oxides: Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants[J]. Environmental Science & Technology, 2019, 53(1): 307-315.
[77] LI Y, MA S L, XU S J, et al. Novel magnetic biochar as an activator for peroxymonosulfate to degrade bisphenol A: Emphasizing the synergistic effect between graphitized structure and CoFe2O4[J]. Chemical Engineering Journal, 2020, 387: 124094. doi: 10.1016/j.cej.2020.124094
[78] REN W, XIONG L L, NIE G, et al. Insights into the electron-transfer regime of peroxydisulfate activation on carbon nanotubes: The role of oxygen functional groups[J]. Environmental Science & Technology, 2020, 54(2): 1267-1275.
[79] LI X H, ZHAO Z H, LI H C, et al. Degradation of organic contaminants in the CoFe2O4/peroxymonosulfate process: The overlooked role of Co(II)-PMS complex[J]. Chemical Engineering Journal Advances, 2021, 8: 100143. doi: 10.1016/j.ceja.2021.100143
[80] ZHANG X J, ZHU X B, LI H, et al. Combination of peroxymonosulfate and Fe(Ⅵ) for enhanced degradation of sulfamethoxazole: The overlooked roles of high-valent iron species[J]. Chemical Engineering Journal, 2023, 453: 139742. doi: 10.1016/j.cej.2022.139742
[81] YANG L, WEI Z F, GUO Z H, et al. Significant roles of surface functional groups and Fe/Co redox reactions on peroxymonosulfate activation by hydrochar-supported cobalt ferrite for simultaneous degradation of monochlorobenzene and p-chloroaniline[J]. Journal of Hazardous Materials, 2023, 445: 130588. doi: 10.1016/j.jhazmat.2022.130588
[82] WANG Z, QIU W, PANG S Y, et al. Further understanding the involvement of Fe(IV) in peroxydisulfate and peroxymonosulfate activation by Fe(II) for oxidative water treatment[J]. Chemical Engineering Journal, 2019, 371: 842-847. doi: 10.1016/j.cej.2019.04.101