-
氮是植物生长所需的重要营养元素,也是水体富营养化的主要污染物,水体中的氮素经过悬浮颗粒物或沉积物的吸附、络合、絮凝或共沉淀作用,富集到沉积物中成为“汇”[1 − 2]. 当环境条件发生改变时,沉积物中的氮素会通过解吸、溶解、生物分解等作用再次释放到上覆水中,成为二次污染“源”[3]. 氨氮(NH3-N)作为沉积物氮素向水体释放的主要形态引起了国内外学者的广泛关注[4].
目前对湖泊、水库、河流等水域沉积物中NH3-N的释放动力学特征、释放通量和潜力等方面的研究较多,研究方法包括实验室培养(静态培养、连续流动培养和摇瓶法)和原位测定(原位箱和高分辨孔隙水原位采样)[5 − 7]. 研究发现,不同水域沉积物中NH3-N的释放量存在较大差异:苏青青等[8]通过释放动力学试验和一级动力学模型拟合,测得香溪河沉积物NH3-N的最大释放量为67.1—74.4 mg·kg−1;王圣瑞等[7]测得洱海表层沉积物NH3-N的释放量为120.9—281.0 mg·kg−1;邹航等[9]的研究则发现,珠江河口湿地沉积物对NH3-N表现为吸附作用,吸附量变化范围为267.0—377.5 mg·kg−1.
沉积物NH3-N的释放能力受本底氮含量、水力扰动、DO浓度、pH值、盐度、水土质量比、有机质矿化程度、水生植物等因素的影响[10 − 12]. 李志萍等[13]对汤河水库沉积物NH3-N释放影响因素的研究发现,上覆水NH3-N浓度的变化对沉积物NH3-N释放量的影响不显著,但上覆水温度和pH升高,水力扰动和贫氧条件均能促进沉积物NH3-N的释放[14 − 15]. 上覆水环境对滇池上游和白洋淀沉积物NH3-N释放影响的模拟研究显示[16],酸性或碱性条件有利于NH3-N的释放,而在中性条件下释放量最小. 刘培芳等[17]研究水体盐度对长江口潮滩沉积物NH3-N释放的影响,发现盐度上升可促进离子吸附反应配位键的形成,促进沉积物NH3-N的释放. 上覆水的水化学条件(如pH、IS等)对不同水域沉积物NH3-N释放影响的规律存在差异,沉积物NH3-N本底值的异质性可能导致沉积物NH3-N释放特征表现出与已有研究不同的规律. 人工湿地进水水化学条件的变化程度高于湖泊和水库,且湿地水浅、易受风浪扰动的影响,其沉积物NH3-N释放特征及水化学条件的影响仍不清楚,相关研究鲜见报道.
为此,以云南大理洱海上游的罗时江表流人工湿地为研究对象,通过野外定位观测明确湿地上覆水和表层沉积物中NH3-N的时空分布特征,进一步借助摇瓶试验法测定湿地典型样点表层沉积物的NH3-N释放量,并设置上覆水的pH和IS梯度,研究不同水化学条件对沉积物NH3-N释放的影响. 研究结果可为准确评价表流人工湿地截留污染物效率提供基础数据,为罗时江流域人工湿地沉积物的清淤管理提供科学依据.
洱海罗时江湿地表层沉积物氨氮释放特征及影响因素
Release characteristics and influencing factors of ammonia nitrogen in the surface sediment of the Luoshijiang Wetland upstream of the Erhai Lake
-
摘要: 以洱海上游的罗时江湿地为研究对象,基于为期半年的野外监测,弄清湿地水体和表层沉积物中氨氮(NH3-N)的时空分异规律,借助摇瓶试验法探究湿地入口沉积物NH3-N的释放特征及水体离子强度(IS)和pH的影响. 结果表明:(1)罗时江湿地上覆水和表层沉积物NH3-N浓度变化范围分别为0.14—1.45 mg·L−1和0.23—8.89 mg·kg−1,干湿季差异均不显著(P>0.05);上覆水和表层沉积物NH3-N浓度均沿水流方向显著下降(P<0.05),出水口NH3-N平均浓度分别是入水口的59.2%和49.9%,湿地对水体NH3-N有截留效果. (2)模拟试验条件下,沉积物NH3-N累积释放量的变化范围为412.9—653.7 mg·kg−1,随提取次数的增加单次释放量逐渐降低;NH3-N累积释放量湿地入口显著高于其他样点,干季高于湿季. (3)上覆水IS升高促进沉积物NH3-N的持续释放,增加快速释放NH3-N占比;上覆水处于弱酸条件下更利于沉积物NH3-N的持续释放,同时提高快速释放NH3-N占比. 研究结果显示,表流湿地入水口沉积物是NH3-N的主要富集场所,水化学条件变化导致NH3-N向上覆水释放可能引起二次污染.
-
关键词:
- 表流人工湿地 /
- 沉积物氨氮 /
- 释放特征 /
- 上覆水pH和离子强度影响.
Abstract: The Luoshijiang Wetland, located in the upstream of the Erhai Lake, was selected as the research object. The spatiotemporal variations of ammonia nitrogen (NH3-N) in the water body and surface sediment of the wetland were clarified based on the half-year field monitoring, and the release characteristics of NH3-N in the wetland inlet sediment and the effects of water ionic strength (IS) and pH were explored via flask-shaking test. The results showed that: (1) The NH3-N concentrations in the overlying water and surface sediment of the Luoshijiang Wetland varied from 0.14 mg·L−1 to 1.45 mg·L−1 and 0.23 mg·kg−1 to 8.89 mg·kg−1, respectively, with no significant difference in dry and wet seasons (P>0.05). The NH3-N concentrations in the overlying water and surface sediment decreased significantly along the flow direction (P<0.05), and the average NH3-N concentration at the outlet was 59.2% and 49.9% of that at the inlet, respectively. The wetland showed a retention effect towards NH3-N in the water body. (2) Under the simulated test conditions, the cumulative release amount of NH3-N from sediment varied from 412.9 mg·kg−1to 653.7 mg·kg−1, and the single release amount gradually decreased with the increase of extraction times. The cumulative release amount of NH3-N at the wetland inlet was significantly higher than that at other sample sites, and was higher in the dry season than in the wet season. (3) The increase of IS in the overlying water promoted the continuous release of NH3-N from sediment and increased the proportion of rapid release NH3-N. The weak acid condition of the overlying water facilitated the continuous release of NH3-N from sediment, and the proportion of rapid release NH3-N was also increased. The results indicated that the sediment at the inlet of the surface flow wetland was the main enrichment site of NH3-N, and the change of water chemical conditions might lead to the release of NH3-N to the overlying water, resulting in potential secondary pollution. -
表 1 罗时江湿地上覆水理化指标和氮浓度的月际变化
Table 1. Inter-monthly variation of physicochemical indicators and nitrogen concentrations in the overlying water of the Luoshijiang Wetland
月份
MonthpH DO/(mg·L−1) ORP/mV T/℃ TDS/(mg·L−1) TN/(mg·L−1) NH3-N/(mg·L−1) 1 7.4±0.2ab 6.6±0.5a 110±60a 10.5±1.1e 500±20c 2.2±0.9bc 0.8±0.4a 2 7.5±0.3ab 4.0±0.6bc 40±20b 13.1±1.3d 500±70c 5.6±2.1a 0.8±0.2a 3 7.6±0.4a 3.3±0.4c 130±50a 15.6±1.6c 440±20c 3.0±0.7b 0.7±0.3a 4 7.4±0.5ab 5.1±2.8b 130±50a 20.9±3.6b 620±130b 3.0±0.7b 0.6±0.1ab 5 7.2±0.3b 3.0±0.7c 120±40a 26.4±1.7a 610±60b 1.3±0.4c 0.4±0.4b 6 7.2±0.1b 2.7±0.2c 120±50a 25.2±0.5a 700±14a 1.4±0.3c 0.9±0.3a 注:不同字母表示季节间差异显著( P <0.05).
Note: Different letters indicate significant differences between seasons at P<0.05.表 2 表层沉积物NH3-N释放特征参数
Table 2. Parameters of NH3-N release characteristics in surface sediment
参数
Parameter干季S1
Dry season S1干季S6
Dry season S6干季S8
Dry season S8湿季S1
Wet season S1湿季S6
Wet season S6湿季S8
Wet season S8P 191.2 133.6 183.6 185.2 102.1 150.1 F 41.5 57.0 43.5 41.2 50.5 40.3 表 3 不同水化学条件下表层沉积物NH3-N释放特征参数
Table 3. Parameters of NH3-N release characteristics in surface sediment in different water chemical conditions
释放条件
Release conditionsIS=0.01 mol·L−1 IS=0.1 mol·L−1 IS=1 mol·L−1 pH=5 pH=7 pH=9 P 191.2 192.6 64.6 200.3 191.2 209.4 F 41.5 48.7 71.2 42.2 41.5 34.6 -
[1] WESTON N B, GIBLIN A E, BANTA G T, et al. The effects of varying salinity on ammonium exchange in estuarine sediments of the parker river, Massachusetts[J]. Estuaries and Coasts, 2010, 33(4): 985-1003. doi: 10.1007/s12237-010-9282-5 [2] 叶宏萌, 杨浩, 袁旭音, 等. 基于流域沉积物氮磷形态的生态风险评价: 以沙溪流域为例[J]. 环境化学, 2020, 39(12): 3471-3479. doi: 10.7524/j.issn.0254-6108.2019111802 YE H M, YANG H, YUAN X Y, et al. Ecological risk assessment based on nitrogen and phosphorus forms in watershed sediments: A case study of the Shaxi Watershed, Fujian[J]. Environmental Chemistry, 2020, 39(12): 3471-3479 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019111802
[3] ZHONG J C, YOU B S, FAN C X, et al. Influence of sediment dredging on chemical forms and release of phosphorus[J]. Pedosphere, 2008, 18(1): 34-44. doi: 10.1016/S1002-0160(07)60100-3 [4] 何宗健, 吴志强, 倪兆奎, 等. 江湖关系变化对鄱阳湖沉积物氨氮释放风险的影响[J]. 中国环境科学, 2014, 34(5): 1277-1284. HE Z J, WU Z Q, NI Z K, et al. The influence of the River-Lake relation changed on the sediments ammonia nitrogen release risk of Poyang Lake[J]. China Environmental Science, 2014, 34(5): 1277-1284 (in Chinese).
[5] 邓伟明, 徐晓梅, 陈春瑜, 等. 滇池表层沉积物中氨氮的释放特征[J]. 环境科学研究, 2015, 28(4): 524-531. DENG W M, XU X M, CHEN C Y, et al. Study on release characteristics of ammonium in the surface sediments of Dianchi Lake[J]. Research of Environmental Sciences, 2015, 28(4): 524-531 (in Chinese).
[6] KUWABARA J S, WOODS P F, BERELSON W M, et al. Importance of sediment-water interactions in Coeur d'Alene Lake, Idaho, USA: management implications[J]. Environmental Management, 2003, 32(3): 348-359. [7] 王圣瑞, 何宗健, 赵海超等. 洱海表层沉积物中总氮含量及氨氮的释放特征[J]. 环境科学研究, 2013, 26(3): 256-261. WANG S R, HE Z J, ZHAO H C, et al. Studying on total nitrogen content and release characteristics of ammonium in the surface sediment of Erhai Lake[J]. Research of Environmental Sciences, 2013(3): 256-261 (in Chinese).
[8] 苏青青, 宋林旭, 刘德富, 等. 三峡水库香溪河沉积物氮含量和氨氮释放特征[J]. 水生态学杂志, 2019, 40(3): 1-7. SU Q Q, SONG L X, LIU D F, et al. Total nitrogen content and ammonia nitrogen release from surface sediments of Xiangxi River, Three Gorges Reservoir region[J]. Journal of Hydroecology, 2019, 40(3): 1-7 (in Chinese).
[9] 邹航, 王立立, 柳蓉. 珠江河口湿地沉积物吸附氨氮及影响因素研究[J]. 环境污染与防治, 2014, 36(3): 46-51. doi: 10.3969/j.issn.1001-3865.2014.03.009 ZOU H, WANG L L, LIU R. Study on the ammonia nitrogen adsorption of sediments in Pearl River estuarine wetlands and its impact factors[J]. Environmental Pollution and Control, 2014, 36(3): 46-51 (in Chinese). doi: 10.3969/j.issn.1001-3865.2014.03.009
[10] BOLAEK J, GRACA B. Ammonia nitrogen at the water-sediment interface in Puck bay (Baltic sea)[J]. Estuarine, Coastal and Shelf Science, 1996, 43(6): 767-779. doi: 10.1006/ecss.1996.0102 [11] YIN K, HARRISON P. Influences of flood and ebb tides on nutrient fluxes and chlorophyll on an intertidal flat[J]. Marine Ecology Progress Series, 2000, 196: 75-85. doi: 10.3354/meps196075 [12] HU W F, LO W, CHUA H, et al. Nutrient release and sediment oxygen demand in a eutrophic land-locked embayment in Hong Kong[J]. Environment International, 2001, 26(5-6): 369-375. doi: 10.1016/S0160-4120(01)00014-9 [13] 李志萍, 刘攀峰, 韩亚, 等. 汤河水库底泥氨氮释放规律试验研究[J]. 华北水利水电学院学报, 2013, 34(6): 47-49. LI Z P, LIU P F, HAN Y, et al. Experimental study on ammonia nitrogen release in sediment of Tanghe Reservoir[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2013, 34(6): 47-49 (in Chinese).
[14] 刘成, 邵世光, 范成新, 等. 巢湖重污染汇流湾区沉积物营养盐分布与释放风险[J]. 环境科学研究, 2014, 27(11): 1258-1264. LIU C, SHAO S G, FAN C X, et al. Distribution and release risk of Nutrients in the sediments of heavily polluted confluence bay of Chaohu Lake[J]. Research of Environmental Sciences, 2014, 27(11): 1258-1264 (in Chinese).
[15] 邱昭政, 颜昌宙, 赵艳玲, 等. 不同溶氧条件下九龙江口湿地沉积物-水界面氨氮释放与氧化规律[J]. 生态环境学报, 2011, 20(12): 1902-1908. doi: 10.3969/j.issn.1674-5906.2011.12.021 QIU Z Z, YAN C Z, ZHAO Y L, et al. The release and oxidation of ammonia at the sediment-water interface of Jiulong River Estuary wetland under different oxygen conditions[J]. Ecology and Environment, 2011, 20(12): 1902-1908 (in Chinese). doi: 10.3969/j.issn.1674-5906.2011.12.021
[16] 龚云辉, 刘云根, 王妍, 等. pH对高原山地农村沟渠底泥氮形态及氨氮释放通量影响模拟研究[J]. 生态与农村环境学报, 2021, 37(3): 378-386. GONG Y H, LIU Y G, WANG Y, et al. Effect of pH on nitrogen forms and ammonia nitrogen release flux in the bottom muddy of plateau rural ditches[J]. Journal of Ecology and Rural Environment, 2021, 37(3): 378-386 (in Chinese).
[17] 刘培芳, 陈振楼, 刘杰, 等. 环境因子对长江口潮滩沉积物中NH4+的释放影响[J]. 环境科学研究, 2002, 15(5): 28-32. doi: 10.3321/j.issn:1001-6929.2002.05.008 LIU P F, CHEN Z L, LIU J, et al. Effects of environmental factors on NH4+release in tidal flat sediments along the Yangtze delta[J]. Research of Environmental Sciences, 2002, 15(5): 28-32 (in Chinese). doi: 10.3321/j.issn:1001-6929.2002.05.008
[18] 项颂, 吴越, 吕兴菊, 等. 洱海流域农业面源污染空间分布特征及分类控制策略[J]. 环境科学研究, 2020, 33(11): 2474-2483. XIANG S, WU Y, LÜ X J, et al. Characteristics and spatial distribution of agricultural non-point source pollution in Erhai Lake basin and its classified control strategy[J]. Research of Environmental Sciences, 2020, 33(11): 2474-2483 (in Chinese).
[19] 袁海英, 梁启斌, 侯磊, 等. 洱海入湖河口湿地沉积物氨氮释放潜力研究[J]. 生态与农村环境学报, 2020, 36(6): 762-769. YUAN H Y, LIANG Q B, HOU L, et al. Research on the release potential of ammonia in the estuarine wetland sediments of Erhai Lake[J]. Journal of Ecology and Rural Environment, 2020, 36(6): 762-769 (in Chinese).
[20] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境出版社, 2002. State Environmental Protection Administration, the editorial board of water and wastewater monitoring and analysis methods. Water and wastewater monitoring analysis method [M]. Fourth Edition. Beijing: China Environmental Science Press, 2002 (in Chinese).
[21] 中华人民共和国环境保护部, 2012. 土壤氨氮、硝酸盐氮、亚硝酸盐氮的测定氯化钾溶液提取-分光光度法: HJ 634-2012[S]. 北京: 中国环境科学出版社: 1-7. Ministry of Ecology and Environment of the People’s Republic of China. Determination of ammonia nitrogen, nitrate nitrogen and nitrite nitrogen in soil by Potassium Chloride Solution Extraction Spectrophotometry: HJ 634-2012[S]. Beijing: China Environmental Science Press: 1-7 (in Chinese).
[22] 王圣瑞, 赵海超, 王娟, 等. 有机质对湖泊沉积物不同形态氮释放动力学影响研究[J]. 环境科学学报, 2012, 32(2): 332-340. WANG S R, ZHAO H C, WANG J, et al. The effects of organic matter on the release kinetics of nitrogen with different forms in the lake sediments[J]. Acta Scientiae Circumstantiae, 2012, 32(2): 332-340 (in Chinese).
[23] ONGLEY E D, ZHANG X, YU T. Current status of agricultural and rural non-point source pollution assessment in China[J]. Environmental Pollution, 2010, 158(5): 1159-1168. doi: 10.1016/j.envpol.2009.10.047 [24] 张子璐, 刘峰, 侯庭钰. 我国稻田氮磷流失现状及影响因素研究进展[J]. 应用生态学报, 2019, 30(10): 3292-3302. ZHANG Z L, LIU F, HOU T Y. Current status of nitrogen and phosphorus losses and related factors in Chinese paddy fields: A review[J]. Chinese Journal of Applied Ecology, 2019, 30(10): 3292-3302 (in Chinese).
[25] LIANG Z, LIU Z, ZHEN S, et al. Phosphorus speciation and effects of environmental factors on release of phosphorus from sediments obtained from Taihu Lake, Tien Lake, and East Lake[J]. Toxicological and Environmental Chemistry, 2015, 97(3-4): 335-348. doi: 10.1080/02772248.2015.1050186 [26] 刘永, 张诗涵, 肖雅元, 等. 红树林人工湿地的脱氮除磷效果研究[J]. 农业环境科学学报, 2022, 41(8): 1788-1799. doi: 10.11654/jaes.2021-1478 LIU Y, ZHANG S H, XIAO Y Y, et al. Efficiency of mangrove wetlands in nitrogen and phosphorus removal from wastewater[J]. Journal of Agro-Environment Science, 2022, 41(8): 1788-1799 (in Chinese). doi: 10.11654/jaes.2021-1478
[27] 朱辉翔, 张树楠, 彭英湘, 等. 绿狐尾藻湿地对养殖废水中不同污染负荷氮去除效应[J]. 农业工程学报, 2020, 36(19): 217-224. doi: 10.11975/j.issn.1002-6819.2020.19.025 ZHU H X, ZHANG S N, PENG Y X, et al. Effect of myriophyllum elatinoides wetland on nitrogen removal from swine wastewater under different pollution loads[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 217-224 (in Chinese). doi: 10.11975/j.issn.1002-6819.2020.19.025
[28] 张亚娟, 刘存歧, 古钧, 等. 汪洋沟表层沉积物中总氮含量和氨氮释放特征[J]. 环境工程学报, 2015, 9(2): 519-524. doi: 10.12030/j.cjee.20150204 ZHANG Y J, LIU C Q, GU J, et al. Total nitrogen content and release characteristics of ammonium in surface sediment of Wangyang River[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 519-524 (in Chinese). doi: 10.12030/j.cjee.20150204
[29] 李宝, 丁士明, 范成新, 等. 滇池福保湾间隙水氮磷分布及其与底泥微生物和磷酸酶相互关系[J]. 湖泊科学, 2008, 20(4): 420-427. doi: 10.3321/j.issn:1003-5427.2008.04.003 LI B, DING S M, FAN C X, et al. Distributions of nitrogen and phosphorus in interstitial waters in the sediments of Fubao Bay in Lake Dianchi and their relationships with the activities of microbe and alkaline phosphatase in the surface sediments[J]. Journal of Lake Sciences, 2008, 20(4): 420-427 (in Chinese). doi: 10.3321/j.issn:1003-5427.2008.04.003
[30] 段四喜, 杨文燕, 李锋林, 等. 洱海流域肥料面源污染负荷特征研究[J]. 江西农业学报, 2022, 34(1): 193-201. DUAN S X, YANG W Y, LI F L, et al. Research on load characteristics of non-point source pollution of fertilizer in Erhai lake basin[J]. Acta Agriculturae Jiangxi, 2022, 34(1): 193-201 (in Chinese).
[31] 袁轶君, 何鹏程, 刘娜娜, 等. 温度与扰动对鄱阳湖沉积物氮释放的影响[J]. 东华理工大学学报(自然科学版), 2020, 43(5): 495-500. YUAN Y J, HE P C, LIU N N, et al. Effects of temperature and disturbance on nitrogen release from sediment of Poyang Lake[J]. Journal of East China university of Technology (Natural Science), 2020, 43(5): 495-500 (in Chinese).
[32] MARTIN S, KRISTENSEN P, JEPPESEN E. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arresø, Denmark[J]. Hydrobiologia, 1992, 228(1): 91-99. doi: 10.1007/BF00006480 [33] 叶琳琳, 潘成荣, 张之源, 等. 瓦埠湖沉积物氮的赋存特征以及环境因子对NH4+-N释放的影响[J]. 农业环境科学学报, 2006, 25(5): 1333-1336. doi: 10.3321/j.issn:1672-2043.2006.05.047 YE L L, PAN C R, ZHANG Z Y, et al. Characteristics of N forms in Wabu lake sediments and effects of environmental factors on NH4+-N release[J]. Journal of Agro-Environment Science, 2006, 25(5): 1333-1336 (in Chinese). doi: 10.3321/j.issn:1672-2043.2006.05.047
[34] 刘静静, 汪家权, 徐文炘. 环境因子对巢湖沉积物中NH4+释放的影响[J]. 安徽农业科学, 2008, 36(29): 12870-12872. doi: 10.3969/j.issn.0517-6611.2008.29.138 LIU J J, WANG J Q, XU W X. Effects of environmental factors on NH4+ release in sediment from Chaohu lake[J]. Journal of Anhui Agricultural Sciences, 2008, 36(29): 12870-12872 (in Chinese). doi: 10.3969/j.issn.0517-6611.2008.29.138
[35] 石晓勇, 王修林, 陆茸, 等. 东海赤潮高发区春季溶解氧和pH分布特征及影响因素探讨[J]. 海洋与湖沼, 2005, 36(5): 404-412. doi: 10.3321/j.issn:0029-814X.2005.05.003 SHI X Y, WANG X L, LU R, et al. Distribution of dissolved oxygen and pH in frequent HAB area of the East China Sea in spring 2002[J]. Oceanologia et Limnologia Sinica, 2005, 36(5): 404-412 (in Chinese). doi: 10.3321/j.issn:0029-814X.2005.05.003
[36] 张然, 陈雅丽, 武晓娟, 等. 离子强度和胡敏酸影响下不同土壤胶体稳定性研究[J]. 环境科学学报, 2021, 41(6): 2347-2357. ZHANG R, CHEN Y L, WU X J, et al. Stability of different types of soil colloids under the influence of ionic strength and humic acid[J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2347-2357 (in Chinese).
[37] 孙刘鑫, 王培茗, 杨俊浩, 等. 离子强度对吸附有机污染物影响的研究进展[J]. 化工进展, 2021, 40(6): 3239-3257. SUN L X, WANG P M, YANG J H, et al. Research progress on the effect of ionic strength on the removal of organic pollutants from wastewater by adsorbents[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3239-3257 (in Chinese).
[38] 刘莹, 刘晓晖, 张亚茹, 等. 三种人工湿地填料对低浓度氨氮废水的吸附特性[J]. 环境化学, 2018, 37(5): 1118-1127. doi: 10.7524/j.issn.0254-6108.2017082913 LIU Y, LIU X H, ZHANG Y R, et al. Adsorption properties of low concentration ammonia nitrogen wastewater by three constructed wetland fillers[J]. Environmental Chemistry, 2018, 37(5): 1118-1127 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017082913
[39] 裴佳瑶, 冯民权. 环境因子对雁鸣湖沉积物氮磷释放的影响[J]. 环境工程学报, 2020, 14(12): 3447-3459. doi: 10.12030/j.cjee.201912021 PEI J Y, FENG M Q. Effects of environmental factors on the release of nitrogen and phosphorus from the sediment of the Yanming Lake, China[J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3447-3459 (in Chinese). doi: 10.12030/j.cjee.201912021
[40] LI Z, WANG S R, WU Z H, Coupling effect of pH and dissolved oxygen in water column on nitrogen release at water sediment interface of Erhai Lake, China[J]. Estuarine Coastal and Shelf Science, 2014, 149: 178-186 (in Chinese). [41] 陈家厚. 松花江流域pH值异常变化的监测分析[J]. 黑龙江环境通报, 2008, 32(3): 14-17. CHEN J H. The diagnoses of pH abnormal change in Songhua River Basin[J]. Heilongjiang Environmental Journal, 2008, 32(3): 14-17 (in Chinese).