-
羟胺作为重要的活性氮化合物,在地球氮循环中起着至关重要的作用[1-3]. 大量研究表明多种氨氧化微生物催化的氨氧化[4-5],氮固化[6]、硝化和反硝化[7]等过程中均有羟胺化合物的产生,为了深入了解羟胺在地球氮循环中的作用,研究羟胺在环境中的迁移转化是十分必要的.
NOM作为环境中普遍存在的复杂有机混合物,包含羟基、酮基、羧基等多种活性基团[8-9],对多种含氮化合物的环境迁移转化有着重要影响. 例如,环境中的苯胺化合物可以共价结合NOM分子[10];氨作为农业土壤氮肥中含量最丰富的一种形式,可与NOM结合而被称之为氨固化[11]; 3,4-二氯苯胺是敌草隆除草剂降解过程中产生的主要代谢物,它能够不可逆地与NOM结合,从而降低其毒性[12]. 在NOM与上述含氮化合物的相互作用过程中,NOM的醛、酮官能团被认为是主要的作用位点.
羟胺也可以与羰基反应生成肟类产物[13],已有多篇研究报道了羟胺与NOM的相互作用以探究NOM对羟胺的吸收作用[14]或测定含羰基的NOM组分[15]. Thorn等通过液体15N NMR光谱法对羟胺衍生的NOM产物进行了表征,证明肟类化合物是其主要衍生物[16]. 然而,由于NOM组成极其复杂,传统的方法很难分离羟胺衍生的NOM组分从而获得更全面的分子信息. 因此,尽管羟胺衍生的NOM的分子组成对环境化学家更好地理解有机质对全球氮循环中羟胺转化的影响具有重要意义,但到目前为止尚未见报道.
FTICR-MS,因其具有超高的质量检测准确度和分辨率,目前已成为表征NOM[17]及其消毒副产物[18]分子组成的重要分析工具. 通过对NOM中存在的小分子有机物的精确质量数测定,从而获得其分子式信息,在此基础上,通过各种可视化图分析,可进一步区分NOM分子所属化合物种类,如脂类、木质素类、鞣酸类、稠环芳烃类等,还可进一步分析化合物的疏水性、芳香度、不饱和度等性质[19-20]. 基于此,本研究采用FTICR-MS对羟胺衍生的NOM产物进行分子表征,采用15N同位素标记的羟胺作为起始反应物,以保证所得到的15N同位素标记羟胺衍生NOM产物能排除NOM中其他组分的干扰,从而被特异性地识别检测;同时考察了时间对羟胺与NOM反应的影响.
傅里叶变换离子回旋共振质谱分子表征15N同位素标记羟胺衍生化天然有机质
Molecular characterization of 15N-labelled hydroxylamine-derivatized natural organic matter by FTICR-MS
-
摘要: 羟胺化合物是地球氮循环过程中的重要中间产物. 天然有机质(NOM)作为环境中普遍存在的复杂有机混合物,对羟胺的环境转化有重要影响. 本研究采用傅里叶变换离子回旋共振质谱(FTICR-MS)在分子层面表征羟胺与NOM的相互作用产物,采用15N同位素标记羟胺作为反应物以排除NOM本身存在的化合物的质谱峰干扰,特异性识别15N同位素标记羟胺衍生化NOM的质谱信号;同时考察了反应时间对NOM与羟胺反应活性的影响. 结果表明,NOM与过量15N同位素标记羟胺在室温条件反应下10 h,可以鉴定到2137个15N同位素标记羟胺衍生化NOM产物分子式,其中包括,1个15N同位素标记羟胺分子与1个仅含C、H、O元素的NOM分子反应形成的产物分子式1346个(CHO15N1,约占产物分子式总数63%),两个15N同位素标记羟胺分子与一个仅含C、H、O元素的NOM分子反应形成的产物分子式194个(CHO15N2,约占产物分子式总数9%),一个15N同位素标记羟胺分子与一个仅含C、H、O和一个S元素的NOM分子反应形成的产物分子式376个(CHOS115N1,约占产物分子式总数18%),一个15N同位素标记羟胺分子与一个仅含C、H、O和一个N元素的NOM分子反应形成的产物分子式221个(CHON115N1,约占产物分子式总数10%). 这些羟胺衍生化NOM产物主要属于维管植物源多酚类和高不饱和酚类化合物,86%以上的产物很可能通过羟胺与NOM分子所含的羰基基团发生肟化反应形成. CHO15N1类产物的形成具有高度的时间依赖性,高氧化高饱和度的NOM化合物需要较长的反应时间才能形成羟胺衍生化NOM产物,表明此类化合物与羟胺的反应活性较弱;而低氧化高不饱和度的NOM化合物仅需要较短的时间便能形成羟胺衍生化产物,且随着反应时间延长,其中的部分化合物可以进一步生成多肟化产物或不稳定的其他产物,此结果表明这类NOM化合物对羟胺的反应活性较强. 本研究采用FTICR-MS首次在分子水平全面表征了羟胺与FTICR-MS相互作用产物信息,可为羟胺在地球氮循环过程中的迁移转化机制研究提供全新视角和信息.
-
关键词:
- 15N同位素标记羟胺 /
- 傅里叶变换离子回旋共振质谱 /
- 天然有机质 /
- 羟胺衍生化天然有机质.
Abstract: Hydroxylamine is a crucial intermediate in the natural nitrogen cycle. Natural organic matter (NOM), as a very complicated heterogeneous mixture widely existing in the environment, may affect the transformation processes of hydroxylamine. Here, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is used for molecular characterization of hydroxylamine derivatized-NOM. 15N-labelled hydroxylamine is applied to specifically discriminate 15N-labelled hydroxylamine derivatized-NOM from other interferences original existing in NOM. The effect of reaction time on the reactivity of NOM to hydroxylamine is investigated. A total of 2137 molecular formulas of the derivatives are obtained including CHO15N1 (1346, 63%), CHO15N2 (194, 9%), CHOS115N1 (376, 18%) and CHON115N1 (221, 10%). The 15N-labelled hydroxylamine derivatized-NOM are mainly assigned to vascular plant-derived polyphenols and highly unsaturated and phenolic compounds. More than 86% of the derivatives appear to be formed by oximation reaction. The generation of CHO15N1 derivatives is highly time dependent. More oxidized and saturated NOM CHO compounds need long time to form the hydroxylamine derivatives, indicating they appear to be less liable to react with hydroxylamine, while less oxidized and more unsaturated NOM CHO compounds could form the hydroxylamine derivatives in short time, and some of them even could generate multi-oximed products or other unstable products within longer time, which suggests they may have high reactivities to hydroxylamine. This is the first report on the comprehensively molecular characterization of the hydroxylamine derivatized-NOM by FTICR-MS and can provide new insight into the research on migration and transformation mechanism of hydroxylamine in the nitrogen cycle. -
图 1 NOM样品FTICR-MS质谱图
Figure 1. Mass spectra of NOM at nominal m/z 389 (A) and m/z 460 (C); Mass spectra of NOM reacting with -labelled hydroxylamine in 10 h, at nominal m/z 389 (B), at nominal m/z 460(D). Molecular formulas of the detected 15N- labelled-hydroxylamine derivatized-NOM components were listed under the spectra
图 2 NOM与15N标记羟胺反应前(A)后(B)鉴定到的分子式数目和占比图;NOM样品(C)和NOM与15N标记羟胺反应10 h后(D)鉴定分子式的Van Krevelen图
Figure 2. Number and percentage of molecular formulas identified in NOM (A) and NOM reacting with 15N-labelled hydroxylamine in 10 h (B); Van Krevelen diagrams of the identified formulas in NOM (C) and NOM reacting with 15N- labelled hydroxylamine in 10 h (D)
图 3 (A)基于肟化反应的母子-分子对个数和百分比图;(B)NOM中CHO分子以及与羟胺反应10 h形成CHO15N1 和 CHO15N2产物的CHO分子的VK图,(C)NOM中CHON1分子以及与羟胺反应10 h形成CHON115N1产物的CHON1分子的VK图,(D)NOM中CHOS1分子以及与羟胺反应10 h形成CHOS115N1产物的CHOS1分子的VK图
Figure 3. (A) Number and percentage of the precursor-product molecule pairs based on oximation reaction; (B) Van Krevelen diagrams of CHO formulas in NOM, precursors of CHO15N1 and CHO15N2 formulas obtained in NOM reacting with 15N-labelled hydroxylamine in 10 h; (C) Van Krevelen diagrams of CHON1 formulas in NOM and precursors of CHON115N1 formulas obtained in NOM reacting with 15N- labelled hydroxylamine in 10 h; (D) Van Krevelen diagrams of CHOS1 formulas in NOM and precursors of CHOS115N1 formulas obtained in NOM reacting with 15N- labelled hydroxylamine in 10 h
图 4 15N同位素标记羟胺与NOM反应0, 2, 4, 8 和 10 h后的FTICR-MS质谱图(A)m/z 411.142检测的质谱峰,(B)m/z 499.064检测的质谱峰, (C)m/z 469.127检测的质谱峰, (D) m/z 395.134检测的质谱峰, (E) m/z 483.056检测的质谱峰, (F) m/z 453.119检测的质谱峰
Figure 4. Mass spectra of NOM reacting with 15N-labelled hydroxylamine in 0, 2, 4, 8 and 10 h (A) the detected peak at m/z 411.142, (B) at m/z 499.064, (C) at m/z 469.127, (D) at m/z 395.134, (E) at m/z 483.056, (F) at m/z 453.119
图 7 (A)15N同位素标记羟胺与NOM反应2、10 h后的FTICR-MS质谱图m/z 469.127和m/z 485.134;(B)形成双肟化产物或者其他产物的RI值小于等于0.8的共同鉴定CHO15N1产物的VK图
Figure 7. (A) Mass spectra of NOM reacting with 15N-labelled hydroxylamine in 2 and 10 h at m/z 469.127 and m/z 485.134; (B) Van Krevelen diagrams of formulas with RI lower than 0.8 formed dioxime products and other products
-
[1] TANAKA M. Occurrence of hydroxylamine in lake waters as an intermediate in bacterial reduction of nitrate [J]. Nature, 1953, 171(4365): 1160-1161. [2] WHITE C J, LEHNERT N. Is there a pathway for N2O production from hydroxylamine oxidoreductase in ammonia-oxidizing bacteria? [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(51): 14474-14476. doi: 10.1073/pnas.1617953114 [3] VAJRALA N, MARTENS-HABBENA W, SAYAVEDRA-SOTO L A, et al. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine Archaea [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(3): 1006-1011. doi: 10.1073/pnas.1214272110 [4] CARANTO J D, LANCASTER K M. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(31): 8217-8222. doi: 10.1073/pnas.1704504114 [5] STEIN L Y. Insights into the physiology of ammonia-oxidizing microorganisms [J]. Current Opinion in Chemical Biology, 2019, 49: 9-15. doi: 10.1016/j.cbpa.2018.09.003 [6] PETHICA B A, ROBERTS E R, WINTER E R S. Role of hydroxylamine in biological fixation of nitrogen [J]. Nature, 1949, 163(4141): 408. [7] VERSTRAETE W, ALEXANDER M. Heterotrophic nitrification in samples of natural ecosystems[J]. Environmental Science & Technology. 1973, 7: 39-42. [8] SUTTON R, SPOSITO G. Molecular structure in soil humic substances: The new view [J]. Environmental Science & Technology, 2005, 39(23): 9009-9015. [9] PICCOLO A. The supramolecular structure of humic substances [J]. Soil Science, 2001, 166(11): 810-832. doi: 10.1097/00010694-200111000-00007 [10] THORN K A, PETTIGREW P J, GOLDENBERG W S, et al. Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions [J]. Environmental Science & Technology, 1996, 30(9): 2764-2775. [11] THORN K A, MIKITA M A. Ammonia fixation by humic substances: A nitrogen-15 and carbon-13NMR study [J]. Science of the Total Environment, 1992, 113(1/2): 67-87. [12] ALBERS C N, BANTA G T, HANSEN P E, et al. Effect of different humic substances on the fate of diuron and its main metabolite 3, 4-dichloroaniline in soil [J]. Environmental Science & Technology, 2008, 42(23): 8687-8691. [13] PEARSON D E, KEATON O D. Lethargic reactions. I. the preparation of hindered oximes [J]. The Journal of Organic Chemistry, 1963, 28(6): 1557-1558. doi: 10.1021/jo01041a028 [14] NELSON, D W. Transformations of hydroxylamine in soils[J]. Proceedings of the Indian Acade of Science. 1977, 87: 409-413. [15] SCHNITZER M, SKINNER S I M. A polarographic method for the determination of carbonyl groups in soil humic compounds [J]. Soil Science, 1966, 101(2): 120-124. doi: 10.1097/00010694-196602000-00008 [16] THORN K A, ARTERBURN J B, MIKITA M A. Nitrogen-15 and carbon-13 NMR investigation of hydroxylamine-derivatized humic substances [J]. Environmental Science & Technology, 1992, 26(1): 107-116. [17] STENSON A C, MARSHALL A G, COOPER W T. Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra [J]. Analytical Chemistry, 2003, 75(6): 1275-1284. doi: 10.1021/ac026106p [18] LAVONEN E E, GONSIOR M, TRANVIK L J, et al. Selective chlorination of natural organic matter: Identification of previously unknown disinfection byproducts [J]. Environmental Science & Technology, 2013, 47(5): 2264-2271. [19] KIM S, KRAMER R W, HATCHER P G. Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram [J]. Analytical Chemistry, 2003, 75(20): 5336-5344. doi: 10.1021/ac034415p [20] HUGHEY C A, HENDRICKSON C L, RODGERS R P, et al. Kendrick mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra [J]. Analytical Chemistry, 2001, 73(19): 4676-4681. doi: 10.1021/ac010560w [21] HAN R X, LV J T, LUO L, et al. Molecular-scale investigation of soil fulvic acid and water-extractable organic matter by high-resolution mass spectrometry and 1H NMR spectroscopy [J]. Environmental Chemistry, 2019, 16(2): 92. doi: 10.1071/EN18124 [22] KOCH B P, DITTMAR T, WITT M, et al. Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter [J]. Analytical Chemistry, 2007, 79(4): 1758-1763. doi: 10.1021/ac061949s [23] KUJAWINSKI E B, LONGNECKER K, BLOUGH N V, et al. Identification of possible source markers in marine dissolved organic matter using ultrahigh resolution mass spectrometry [J]. Geochimica et Cosmochimica Acta, 2009, 73(15): 4384-4399. doi: 10.1016/j.gca.2009.04.033 [24] GONSIOR M, PEAKE B M, COOPER W T, et al. Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry [J]. Environmental Science & Technology, 2009, 43(3): 698-703. [25] KOCH B P, DITTMAR T. From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter [J]. Rapid Communications in Mass Spectrometry, 2006, 20(5): 926-932. doi: 10.1002/rcm.2386 [26] KELLERMAN A M, DITTMAR T, KOTHAWALA D N, et al. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology [J]. Nature Communications, 2014, 5: 3804. doi: 10.1038/ncomms4804 [27] BALUHA D R, BLOUGH N V, del VECCHIO R. Selective mass labeling for linking the optical properties of chromophoric dissolved organic matter to structure and composition via ultrahigh resolution electrospray ionization mass spectrometry [J]. Environmental Science & Technology, 2013, 47(17): 9891-9897. [28] STENSON A C. Reversed-phase chromatography fractionation tailored to mass spectral characterization of humic substances [J]. Environmental Science & Technology, 2008, 42(6): 2060-2065.