[1] TANAKA M. Occurrence of hydroxylamine in lake waters as an intermediate in bacterial reduction of nitrate [J]. Nature, 1953, 171(4365): 1160-1161.
[2] WHITE C J, LEHNERT N. Is there a pathway for N2O production from hydroxylamine oxidoreductase in ammonia-oxidizing bacteria? [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(51): 14474-14476. doi: 10.1073/pnas.1617953114
[3] VAJRALA N, MARTENS-HABBENA W, SAYAVEDRA-SOTO L A, et al. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine Archaea [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(3): 1006-1011. doi: 10.1073/pnas.1214272110
[4] CARANTO J D, LANCASTER K M. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(31): 8217-8222. doi: 10.1073/pnas.1704504114
[5] STEIN L Y. Insights into the physiology of ammonia-oxidizing microorganisms [J]. Current Opinion in Chemical Biology, 2019, 49: 9-15. doi: 10.1016/j.cbpa.2018.09.003
[6] PETHICA B A, ROBERTS E R, WINTER E R S. Role of hydroxylamine in biological fixation of nitrogen [J]. Nature, 1949, 163(4141): 408.
[7] VERSTRAETE W, ALEXANDER M. Heterotrophic nitrification in samples of natural ecosystems[J]. Environmental Science & Technology. 1973, 7: 39-42.
[8] SUTTON R, SPOSITO G. Molecular structure in soil humic substances: The new view [J]. Environmental Science & Technology, 2005, 39(23): 9009-9015.
[9] PICCOLO A. The supramolecular structure of humic substances [J]. Soil Science, 2001, 166(11): 810-832. doi: 10.1097/00010694-200111000-00007
[10] THORN K A, PETTIGREW P J, GOLDENBERG W S, et al. Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions [J]. Environmental Science & Technology, 1996, 30(9): 2764-2775.
[11] THORN K A, MIKITA M A. Ammonia fixation by humic substances: A nitrogen-15 and carbon-13NMR study [J]. Science of the Total Environment, 1992, 113(1/2): 67-87.
[12] ALBERS C N, BANTA G T, HANSEN P E, et al. Effect of different humic substances on the fate of diuron and its main metabolite 3, 4-dichloroaniline in soil [J]. Environmental Science & Technology, 2008, 42(23): 8687-8691.
[13] PEARSON D E, KEATON O D. Lethargic reactions. I. the preparation of hindered oximes [J]. The Journal of Organic Chemistry, 1963, 28(6): 1557-1558. doi: 10.1021/jo01041a028
[14] NELSON, D W. Transformations of hydroxylamine in soils[J]. Proceedings of the Indian Acade of Science. 1977, 87: 409-413.
[15] SCHNITZER M, SKINNER S I M. A polarographic method for the determination of carbonyl groups in soil humic compounds [J]. Soil Science, 1966, 101(2): 120-124. doi: 10.1097/00010694-196602000-00008
[16] THORN K A, ARTERBURN J B, MIKITA M A. Nitrogen-15 and carbon-13 NMR investigation of hydroxylamine-derivatized humic substances [J]. Environmental Science & Technology, 1992, 26(1): 107-116.
[17] STENSON A C, MARSHALL A G, COOPER W T. Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra [J]. Analytical Chemistry, 2003, 75(6): 1275-1284. doi: 10.1021/ac026106p
[18] LAVONEN E E, GONSIOR M, TRANVIK L J, et al. Selective chlorination of natural organic matter: Identification of previously unknown disinfection byproducts [J]. Environmental Science & Technology, 2013, 47(5): 2264-2271.
[19] KIM S, KRAMER R W, HATCHER P G. Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram [J]. Analytical Chemistry, 2003, 75(20): 5336-5344. doi: 10.1021/ac034415p
[20] HUGHEY C A, HENDRICKSON C L, RODGERS R P, et al. Kendrick mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra [J]. Analytical Chemistry, 2001, 73(19): 4676-4681. doi: 10.1021/ac010560w
[21] HAN R X, LV J T, LUO L, et al. Molecular-scale investigation of soil fulvic acid and water-extractable organic matter by high-resolution mass spectrometry and 1H NMR spectroscopy [J]. Environmental Chemistry, 2019, 16(2): 92. doi: 10.1071/EN18124
[22] KOCH B P, DITTMAR T, WITT M, et al. Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter [J]. Analytical Chemistry, 2007, 79(4): 1758-1763. doi: 10.1021/ac061949s
[23] KUJAWINSKI E B, LONGNECKER K, BLOUGH N V, et al. Identification of possible source markers in marine dissolved organic matter using ultrahigh resolution mass spectrometry [J]. Geochimica et Cosmochimica Acta, 2009, 73(15): 4384-4399. doi: 10.1016/j.gca.2009.04.033
[24] GONSIOR M, PEAKE B M, COOPER W T, et al. Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry [J]. Environmental Science & Technology, 2009, 43(3): 698-703.
[25] KOCH B P, DITTMAR T. From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter [J]. Rapid Communications in Mass Spectrometry, 2006, 20(5): 926-932. doi: 10.1002/rcm.2386
[26] KELLERMAN A M, DITTMAR T, KOTHAWALA D N, et al. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology [J]. Nature Communications, 2014, 5: 3804. doi: 10.1038/ncomms4804
[27] BALUHA D R, BLOUGH N V, del VECCHIO R. Selective mass labeling for linking the optical properties of chromophoric dissolved organic matter to structure and composition via ultrahigh resolution electrospray ionization mass spectrometry [J]. Environmental Science & Technology, 2013, 47(17): 9891-9897.
[28] STENSON A C. Reversed-phase chromatography fractionation tailored to mass spectral characterization of humic substances [J]. Environmental Science & Technology, 2008, 42(6): 2060-2065.