-
海洋飞沫气溶胶(SSA)是指直接从海洋表面向大气喷射的悬浮颗粒[1-2]. 当其进入海洋边界层(marine boundary layer,MBL)后不仅可以通过吸收和散射太阳辐射而直接影响全球辐射平衡,也可以作为云凝结核(cloud condensation nuclei, CCN)和冰核(ice nuclei, IN)间接影响全球气候[3-6]. 据统计,海洋每年向大气输送的SSA可达100—300亿t[7],且远高于沙尘气溶胶[8]. 因此SSA被普遍认为是影响全球气候系统的重要调节因子. 研究发现SSA排放量的增加有助于全球气候的冷却,进而能缓解或抵消由温室气体所引发的全球变暖[9-10]. 此外,SSA在海-气界面水分、盐分、有机物和微生物的传输过程中也发挥着至关重要的作用[11]. 随着全球经济迅速发展,人为活动引起的海洋环境问题日益突出,海洋中的持久性有机污染物[12]、微塑料[13]、过渡金属[14]、藻毒素[15]、细菌和病毒[16]等均可在SSA上富集并远距离传输. 这不仅会影响SSA的化学组成,还会对大气环境和人类健康产生重大影响. 如何准确评估SSA在全球环境和气候变化中的作用成为了当前大气-海洋交叉学科亟需解决的关键科学问题.
自1953年Woodcock等将风速确定为SSA产生的主要驱动力之后[17],一系列将SSA产生与风速相联系的研究接踵而至[18-19]. 虽然风速是目前已知控制SSA产生的关键,但SSA的产生也会受到其它环境因素(海表温度、海水盐度、表面活性剂和浮游微生物活动等)的影响[20]. 由于对这些环境因素的潜在影响机制认识尚不完全,围绕SSA产生过程和相关影响因素的不确定性使其成为一个持续活跃的研究领域. 外场观测虽然可以对SSA进行原位测量,但是存在一定的时空局限性,且难以明确地分离和量化单个环境因素的影响. 针对上述的研究“短板”,近年来科研工作者在实验室中开展了大量模拟工作,并在SSA产生技术方面取得了重大进展. 同时,实验室模拟研究可实现在受控条件下深入探究不同环境因素对SSA产生过程的影响及作用机制,这对SSA的产生机制研究和全球气候效应预测都至关重要. 因此,本文系统总结了近十年来该领域模拟研究的相关进展,重点介绍SSA的产生、粒径分布、化学组成、物质富集以及影响SSA产生的关键环境因素.
海洋飞沫气溶胶的实验模拟
Laboratory simulation of sea spray aerosol
-
摘要: 作为大气气溶胶的重要组成,海洋飞沫气溶胶(sea spray aerosol,SSA)在全球气候变化中发挥着重要作用. SSA的产生过程同时受到海洋和大气环境的共同作用,其理化性质和全球通量存在显著的区域性差异,进而导致目前SSA对全球环境和气候变化的贡献评估存在较大不确定性. 为了认识SSA的形成过程以及不同环境要素对其产生的影响机制,目前已经展开了大量的研究工作,特别是在实验室受控条件下模拟SSA产生方面获得了丰富的研究成果. 本文聚焦SSA实验室模拟研究,重点围绕SSA的产生、化学组成、物质转移以及其对不同环境因素响应方面的研究进展进行了系统总结,并展望了该领域未来的重点研究方向.Abstract: As an important component of atmospheric aerosol, sea spray aerosol (SSA) plays an important role in global climate change. The formation of SSA is affected by both marine and atmospheric environmental factors, leading to significant regional differences in its physical and chemical properties and global flux. This results in great uncertainties in the current assessment of the contribution of SSA to global environment and climate change. In order to understand the formation process of SSA and the impact mechanism of different environmental factors on it, several studies, especially in the simulation of SSA formation under controlled laboratory conditions, have been conducted. This review explores the laboratory simulation research of SSA, with focus on SSA formation related research progress, chemical composition, substance transfer and its response to different environmental factors. We make a systematic summary, and put forward further prospects for future key research directions.
-
[1] VERON F, Ocean spray[J]. Annual Review of Fluid Mechanics, 2015, 47: 507-538. [2] de LEEUW G, ANDREAS E L, ANGUELOVA M D, et al. Production flux of sea spray aerosol [J]. Reviews of Geophysics, 2011, 49(2): RG2001. [3] BROOKS S D, THORNTON D C O. Marine aerosols and clouds [J]. Annual Review of Marine Science, 2018, 10: 289-313. doi: 10.1146/annurev-marine-121916-063148 [4] HENDRICKSON B N, BROOKS S D, THORNTON D C O, et al. Role of sea surface microlayer properties in cloud formation [J]. Frontiers in Marine Science, 2021, 7: 596225. doi: 10.3389/fmars.2020.596225 [5] XU W, OVADNEVAITE J, FOSSUM K N, et al. Sea spray as an obscured source for marine cloud nuclei [J]. Nature Geoscience, 2022, 15(4): 282-286. doi: 10.1038/s41561-022-00917-2 [6] FOSSUM K N, OVADNEVAITE J, CEBURNIS D, et al. Summertime primary and secondary contributions to Southern Ocean cloud condensation nuclei [J]. Scientific Reports, 2018, 8: 13844. doi: 10.1038/s41598-018-32047-4 [7] QUINN P K, COFFMAN D J, JOHNSON J E, et al. Small fraction of marine cloud condensation nuclei made up of sea spray aerosol [J]. Nature Geoscience, 2017, 10(9): 674-679. doi: 10.1038/ngeo3003 [8] BEER C G, HENDRICKS J, RIGHI M, et al. Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54 [J]. Geoscientific Model Development, 2020, 13(9): 4287-4303. doi: 10.5194/gmd-13-4287-2020 [9] CONNOLLY P J, MCFIGGANS G B, WOOD R, et al. Factors determining the most efficient spray distribution for marine cloud brightening [J]. Philosophical Transactions:Mathematical, Physical and Engineering Sciences, 2014, 372(2031): 20140056. [10] LATHAM J, SMITH M H. Effect on global warming of wind-dependent aerosol generation at the ocean surface [J]. Nature, 1990, 347(6291): 372-373. doi: 10.1038/347372a0 [11] SCHIFFER J M, MAEL L E, PRATHER K A, et al. Sea spray aerosol: Where marine biology meets atmospheric chemistry [J]. ACS Central Science, 2018, 4(12): 1617-1623. doi: 10.1021/acscentsci.8b00674 [12] JOHANSSON J H, SALTER M E, NAVARRO J C A, et al. Global transport of perfluoroalkyl acids via sea spray aerosol [J]. Environmental Science:Processes & Impacts, 2019, 21(4): 635-649. [13] YANG S Y, ZHANG T, GAN Y Q, et al. Constraining microplastic particle emission flux from the ocean [J]. Environmental Science & Technology Letters, 2022, 9(6): 513-519. [14] GUASCO T L, CUADRA-RODRIGUEZ L A, PEDLER B E, et al. Transition metal associations with primary biological particles in sea spray aerosol generated in a wave channel [J]. Environmental Science & Technology, 2014, 48(2): 1324-1333. [15] SEM K, JANG M, PIERCE R, et al. Characterization of atmospheric processes of brevetoxins in sea spray aerosols from red tide events [J]. Environmental Science & Technology, 2022, 56(3): 1811-1819. [16] MICHAUD J M, THOMPSON L R, KAUL D, et al. Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm [J]. Nature Communications, 2018, 9: 2017. doi: 10.1038/s41467-018-04409-z [17] WOODCOCK A H, KIENTZLER C F, ARONS A B, et al. Giant condensation nuclei from bursting bubbles [J]. Nature, 1953, 172(4390): 1144-1145. doi: 10.1038/1721144a0 [18] MONAHAN E C, O'MUIRCHEARTAIGH I G. Whitecaps and the passive remote sensing of the ocean surface [J]. International Journal of Remote Sensing, 1986, 7(5): 627-642. doi: 10.1080/01431168608954716 [19] NILSSON E D, RANNIK, SWIETLICKI E, et al. Turbulent aerosol fluxes over the Arctic Ocean: 2. Wind-driven sources from the sea [J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D23): 32139-32154. doi: 10.1029/2000JD900747 [20] LEWIS R, SCHWARTZ E. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements and Models—A Critical Review[M]. Washington, D. C. : American Geophysical Union, 2004. [21] DEANE G B, STOKES M D. Scale dependence of bubble creation mechanisms in breaking waves [J]. Nature, 2002, 418(6900): 839-844. doi: 10.1038/nature00967 [22] WANG Y, BOUROUIBA L. Non-isolated drop impact on surfaces [J]. Journal of Fluid Mechanics, 2018, 835: 24-44. doi: 10.1017/jfm.2017.755 [23] LHUISSIER H, VILLERMAUX E. Bursting bubble aerosols [J]. Journal of Fluid Mechanics, 2012, 696: 5-44. doi: 10.1017/jfm.2011.418 [24] JIANG X H, ROTILY L, VILLERMAUX E, et al. Submicron drops from flapping bursting bubbles [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(1): e2112924119. doi: 10.1073/pnas.2112924119 [25] QUINN P K, COLLINS D B, GRASSIAN V H, et al. Chemistry and related properties of freshly emitted sea spray aerosol [J]. Chemical Reviews, 2015, 115(10): 4383-4399. doi: 10.1021/cr500713g [26] 吕辰. 海洋飞沫气溶胶参与下的烯烃醚臭氧化反应[D]. 济南: 山东大学, 2020. LV C. Ozonolysis of vinyl ethers with the participation of sea spray aerosol[D]. Jinan: Shandong University, 2020(in Chinese).
[27] BLANCHARD D C. The electrification of the atmosphere by particles from bubbles in the sea [J]. Progress in Oceanography, 1963, 1: 73-202. doi: 10.1016/0079-6611(63)90004-1 [28] CIPRIANO R J, BLANCHARD D C. Bubble and aerosol spectra produced by a laboratory ‘breaking wave’ [J]. Journal of Geophysical Research Atmospheres, 1981, 86(C9): 8085. doi: 10.1029/JC086iC09p08085 [29] KE W R, KUO Y M, LIN C W, et al. Characterization of aerosol emissions from single bubble bursting [J]. Journal of Aerosol Science, 2017, 109: 1-12. doi: 10.1016/j.jaerosci.2017.03.006 [30] PRATHER K A, BERTRAM T H, GRASSIAN V H, et al. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7550-7555. doi: 10.1073/pnas.1300262110 [31] STOKES M D, DEANE G B, PRATHER K, et al. A Marine Aerosol Reference Tank system as a breaking wave analogue for the production of foam and sea-spray aerosols [J]. Atmospheric Measurement Techniques, 2013, 6(4): 1085-1094. doi: 10.5194/amt-6-1085-2013 [32] WANG X F, SULTANA C M, TRUEBLOOD J, et al. Microbial control of sea spray aerosol composition: A tale of two blooms [J]. ACS Central Science, 2015, 1(3): 124-131. doi: 10.1021/acscentsci.5b00148 [33] BRABAN C F, ADAMS J W, RODRIGUEZ D, et al. Heterogeneous reactions of HOI, ICl and IBr on sea salt and sea salt proxies [J]. Physical Chemistry Chemical Physics:PCCP, 2007, 9(24): 3136-3148. doi: 10.1039/b700829e [34] MCNEILL V F, PATTERSON J, WOLFE G M, et al. The effect of varying levels of surfactant on the reactive uptake of N2O5 to aqueous aerosol [J]. Atmospheric Chemistry and Physics, 2006, 6(6): 1635-1644. doi: 10.5194/acp-6-1635-2006 [35] MOORE R H, INGALL E D, SOROOSHIAN A, et al. Molar mass, surface tension, and droplet growth kinetics of marine organics from measurements of CCN activity [J]. Geophysical Research Letters, 2008, 35(7): L07801. [36] FUENTES E, COE H, GREEN D, et al. Laboratory-generated primary marine aerosol via bubble-bursting and atomization [J]. Atmospheric Measurement Techniques, 2010, 3(1): 141-162. doi: 10.5194/amt-3-141-2010 [37] KEENE W C, MARING H, MABEN J R, et al. Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface [J]. Journal of Geophysical Research Atmospheres, 2007, 112(D21): D21202. doi: 10.1029/2007JD008464 [38] WISE M E, FRENEY E J, TYREE C A, et al. Hygroscopic behavior and liquid-layer composition of aerosol particles generated from natural and artificial seawater [J]. Journal of Geophysical Research Atmospheres, 2009, 114(D3): D03201. [39] PARK J Y, LIM S, PARK K. Mixing state of submicrometer sea spray particles enriched by insoluble species in bubble-bursting experiments [J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(1): 93-104. doi: 10.1175/JTECH-D-13-00086.1 [40] LV C, TSONA N T, DU L. Sea spray aerosol formation: Results on the role of different parameters and organic concentrations from bubble bursting experiments [J]. Chemosphere, 2020, 252: 126456. doi: 10.1016/j.chemosphere.2020.126456 [41] NIELSEN L S, BILDE M. Exploring controlling factors for sea spray aerosol production: Temperature, inorganic ions and organic surfactants [J]. Tellus B:Chemical and Physical Meteorology, 2020, 72(1): 1801305. doi: 10.1080/16000889.2020.1801305 [42] MODINI R L, HARRIS B, RISTOVSKI Z D. The organic fraction of bubble-generated, accumulation mode Sea Spray Aerosol (SSA) [J]. Atmospheric Chemistry and Physics, 2010, 10(6): 2867-2877. doi: 10.5194/acp-10-2867-2010 [43] SELLEGRI K, O'DOWD C D, YOON Y J, et al. Surfactants and submicron sea spray generation [J]. Journal of Geophysical Research Atmospheres, 2006, 111(D22): D22215. doi: 10.1029/2005JD006658 [44] MOORE M J K, FURUTANI H, ROBERTS G C, et al. Effect of organic compounds on cloud condensation nuclei (CCN) activity of sea spray aerosol produced by bubble bursting [J]. Atmospheric Environment, 2011, 45(39): 7462-7469. doi: 10.1016/j.atmosenv.2011.04.034 [45] GASTON C J, FURUTANI H, GUAZZOTTI S A, et al. Unique ocean-derived particles serve as a proxy for changes in ocean chemistry [J]. Journal of Geophysical Research Atmospheres, 2011, 116(D18): D18310. doi: 10.1029/2010JD015289 [46] KING S M, BUTCHER A C, ROSENOERN T, et al. Investigating primary marine aerosol properties: CCN activity of sea salt and mixed inorganic-organic particles [J]. Environmental Science & Technology, 2012, 46(19): 10405-10412. [47] WANG X F, DEANE G B, MOORE K A, et al. The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6978-6983. doi: 10.1073/pnas.1702420114 [48] RASMUSSEN B B, NGUYEN Q T, KRISTENSEN K, et al. What controls volatility of sea spray aerosol?Results from laboratory studies using artificial and real seawater samples [J]. Journal of Aerosol Science, 2017, 107: 134-141. doi: 10.1016/j.jaerosci.2017.02.002 [49] ZÁBORI J, KREJCI R, STRÖM J, et al. Comparison between summertime and wintertime Arctic Ocean primary marine aerosol properties [J]. Atmospheric Chemistry and Physics, 2013, 13(9): 4783-4799. doi: 10.5194/acp-13-4783-2013 [50] ZÁBORI J, KREJCI R, EKMAN A M L, et al. Wintertime Arctic Ocean Sea water properties and primary marine aerosol concentrations [J]. Atmospheric Chemistry and Physics, 2012, 12(21): 10405-10421. doi: 10.5194/acp-12-10405-2012 [51] TYREE C A, HELLION V M, ALEXANDROVA O A, et al. Foam droplets generated from natural and artificial seawaters [J]. Journal of Geophysical Research Atmospheres, 2007, 112(D12): D12204. doi: 10.1029/2006JD007729 [52] KEENE W C, LONG M S, REID J S, et al. Factors that modulate properties of primary marine aerosol generated from ambient seawater on ships at sea [J]. Journal of Geophysical Research:Atmospheres, 2017, 122(21): 11961-11990. doi: 10.1002/2017JD026872 [53] LIU L R, DU L, XU L, et al. Molecular size of surfactants affects their degree of enrichment in the sea spray aerosol formation [J]. Environmental Research, 2022, 206: 112555. doi: 10.1016/j.envres.2021.112555 [54] CHRISTIANSEN S, SALTER M E, GOROKHOVA E, et al. Sea spray aerosol formation: Laboratory results on the role of air entrainment, water temperature, and phytoplankton biomass [J]. Environmental Science & Technology, 2019, 53(22): 13107-13116. [55] HULTIN K A H, NILSSON E D, KREJCI R, et al. In situ laboratory sea spray production during the Marine Aerosol Production 2006 cruise on the northeastern Atlantic Ocean [J]. Journal of Geophysical Research Atmospheres, 2010, 115(D6): D06201. [56] FACCHINI M C, RINALDI M, DECESARI S, et al. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates [J]. Geophysical Research Letters, 2008, 35(17): L17814. doi: 10.1029/2008GL034210 [57] COLLINS D B, ZHAO D F, RUPPEL M J, et al. Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes [J]. Atmospheric Measurement Techniques, 2014, 7(11): 3667-3683. doi: 10.5194/amt-7-3667-2014 [58] SALTER M E, NILSSON E D, BUTCHER A, et al. On the seawater temperature dependence of the sea spray aerosol generated by a continuous plunging jet [J]. Journal of Geophysical Research:Atmospheres, 2014, 119(14): 9052-9072. doi: 10.1002/2013JD021376 [59] BATES T S, QUINN P K, FROSSARD A A, et al. Measurements of ocean derived aerosol off the coast of California [J]. Journal of Geophysical Research:Atmospheres, 2012, 117(D21): D00V15. [60] SAUER J S, MAYER K J, LEE C, et al. The Sea Spray Chemistry and Particle Evolution study (SeaSCAPE): Overview and experimental methods [J]. Environmental Science. Processes & Impacts, 2022, 24(2): 290-315. [61] MODINI R L, FROSSARD A A, AHLM L, et al. Primary marine aerosol-cloud interactions off the coast of California [J]. Journal of Geophysical Research:Atmospheres, 2015, 120(9): 4282-4303. doi: 10.1002/2014JD022963 [62] DONALDSON D J, VAIDA V. The influence of organic films at the air-aqueous boundary on atmospheric processes [J]. Chemical Reviews, 2006, 106(4): 1445-1461. doi: 10.1021/cr040367c [63] BIGG E K, LECK C. The composition of fragments of bubbles bursting at the ocean surface [J]. Journal of Geophysical Research Atmospheres, 2008, 113(D11): D11209. doi: 10.1029/2007JD009078 [64] JAYARATHNE T, SULTANA C M, LEE C, et al. Enrichment of saccharides and divalent cations in sea spray aerosol during two phytoplankton blooms [J]. Environmental Science & Technology, 2016, 50(21): 11511-11520. [65] SALTER M E, HAMACHER-BARTH E, LECK C, et al. Calcium enrichment in sea spray aerosol particles [J]. Geophysical Research Letters, 2016, 43(15): 8277-8285. doi: 10.1002/2016GL070275 [66] SCHWIER A N, SELLEGRI K, MAS S, et al. Primary marine aerosol physical flux and chemical composition during a nutrient enrichment experiment in mesocosms in the Mediterranean Sea [J]. Atmospheric Chemistry and Physics, 2017, 17(23): 14645-14660. doi: 10.5194/acp-17-14645-2017 [67] HASENECZ E S, JAYARATHNE T, PENDERGRAFT M A, et al. Marine bacteria affect saccharide enrichment in sea spray aerosol during a phytoplankton bloom [J]. ACS Earth and Space Chemistry, 2020, 4(9): 1638-1649. doi: 10.1021/acsearthspacechem.0c00167 [68] TRIESCH N, van PINXTEREN M, SALTER M, et al. Sea spray aerosol chamber study on selective transfer and enrichment of free and combined amino acids [J]. ACS Earth and Space Chemistry, 2021, 5(6): 1564-1574. doi: 10.1021/acsearthspacechem.1c00080 [69] COCHRAN R E, LASKINA O, JAYARATHNE T, et al. Analysis of organic anionic surfactants in fine and coarse fractions of freshly emitted sea spray aerosol [J]. Environmental Science & Technology, 2016, 50(5): 2477-2486. [70] FU P Q, KAWAMURA K, USUKURA K, et al. Dicarboxylic acids, ketocarboxylic acids and glyoxal in the marine aerosols collected during a round-the-world cruise [J]. Marine Chemistry, 2013, 148: 22-32. doi: 10.1016/j.marchem.2012.11.002 [71] HAWKINS L N, RUSSELL L M. Polysaccharides, proteins, and phytoplankton fragments: Four chemically distinct types of marine primary organic aerosol classified by single particle spectromicroscopy [J]. Advances in Meteorology, 2010, 2010: 1-14. [72] FUENTES E, COE H, GREEN D, et al. On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol–Part 2: Composition, hygroscopicity and cloud condensation activity [J]. Atmospheric Chemistry and Physics, 2011, 11(6): 2585-2602. doi: 10.5194/acp-11-2585-2011 [73] SCHWIER A N, ROSE C, ASMI E, et al. Primary marine aerosol emissions from the Mediterranean Sea during pre-bloom and oligotrophic conditions: Correlations to seawater chlorophyll a from a mesocosm study [J]. Atmospheric Chemistry and Physics, 2015, 15(14): 7961-7976. doi: 10.5194/acp-15-7961-2015 [74] PRATT K A, DEMOTT P J, FRENCH J R, et al. In situ detection of biological particles in cloud ice-crystals [J]. Nature Geoscience, 2009, 2(6): 398-401. doi: 10.1038/ngeo521 [75] KALUARACHCHI C P, OR V W, LAN Y, et al. Size-dependent morphology, composition, phase state and water uptake of nascent submicrometer sea spray aerosols during a phytoplankton bloom [J]. ACS Earth and Space Chemistry, 2022, 6(1): 116-130. doi: 10.1021/acsearthspacechem.1c00306 [76] LEE H D, WIGLEY S, LEE C, et al. Physicochemical mixing state of sea spray aerosols: Morphologies exhibit size dependence [J]. ACS Earth and Space Chemistry, 2020, 4(9): 1604-1611. doi: 10.1021/acsearthspacechem.0c00153 [77] KOEHLER K A, KREIDENWEIS S M, DEMOTT P J, et al. Water activity and activation diameters from hygroscopicity data - Part II: Application to organic species [J]. Atmospheric Chemistry and Physics, 2006, 6(3): 795-809. doi: 10.5194/acp-6-795-2006 [78] LEE H D, MORRIS H S, LASKINA O, et al. Organic enrichment, physical phase state, and surface tension depression of nascent core–shell sea spray aerosols during two phytoplankton blooms [J]. ACS Earth and Space Chemistry, 2020, 4(4): 650-660. doi: 10.1021/acsearthspacechem.0c00032 [79] CRAVIGAN L T, MALLET M D, VAATTOVAARA P, et al. Sea spray aerosol organic enrichment, water uptake and surface tension effects [J]. Atmospheric Chemistry and Physics, 2020, 20(13): 7955-7977. doi: 10.5194/acp-20-7955-2020 [80] LI J, CARLSON B E, YUNG Y L, et al. Scattering and absorbing aerosols in the climate system [J]. Nature Reviews Earth & Environment, 2022, 3(6): 363-379. [81] KANAKIDOU M, SEINFELD J H, PANDIS S N, et al. Organic aerosol and global climate modelling: A review [J]. Atmospheric Chemistry and Physics, 2005, 5(4): 1053-1123. doi: 10.5194/acp-5-1053-2005 [82] COCHRAN R E, JAYARATHNE T, STONE E A, et al. Selectivity across the interface: A test of surface activity in the composition of organic-enriched aerosols from bubble bursting [J]. The Journal of Physical Chemistry Letters, 2016, 7(9): 1692-1696. doi: 10.1021/acs.jpclett.6b00489 [83] MUKHERJEE P, REINFELDER J R, GAO Y. Enrichment of calcium in sea spray aerosol in the Arctic summer atmosphere [J]. Marine Chemistry, 2020, 227: 103898. doi: 10.1016/j.marchem.2020.103898 [84] LECK C, SVENSSON E. Importance of aerosol composition and mixing state for cloud droplet activation over the Arctic pack ice in summer [J]. Atmospheric Chemistry and Physics, 2015, 15(5): 2545-2568. doi: 10.5194/acp-15-2545-2015 [85] GAO Q, LECK C, RAUSCHENBERG C, et al. On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer [J]. Ocean Science, 2012, 8(4): 401-418. doi: 10.5194/os-8-401-2012 [86] CASILLAS-ITUARTE N N, CALLAHAN K M, TANG C Y, et al. Surface organization of aqueous MgCl2 and application to atmospheric marine aerosol chemistry [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6616-6621. doi: 10.1073/pnas.0912322107 [87] HARA K, OSADA K, YABUKI M, et al. Seasonal variation of fractionated sea-salt particles on the Antarctic coast [J]. Geophysical Research Letters, 2012, 39(18): L18801. [88] WELLER R, WAGENBACH D. Year-round chemical aerosol records in continental Antarctica obtained by automatic samplings [J]. Tellus B:Chemical and Physical Meteorology, 2007, 59(4): 755-765. doi: 10.1111/j.1600-0889.2007.00293.x [89] PARK K, KIM J S, MILLER A L. A study on effects of size and structure on hygroscopicity of nanoparticles using a tandem differential mobility analyzer and TEM [J]. Journal of Nanoparticle Research, 2009, 11(1): 175-183. doi: 10.1007/s11051-008-9462-4 [90] CARTER-FENK K, ALLEN H. Collapse mechanisms of nascent and aged sea spray aerosol proxy films [J]. Atmosphere, 2018, 9(12): 503. doi: 10.3390/atmos9120503 [91] SONG Y R, LI J L, TSONA N T, et al. Enrichment of short-chain organic acids transferred to submicron sea spray aerosols[J]. The Science of the Total Environment, 2022, 851(Pt 1): 158122. [92] HASENECZ E S, KALUARACHCHI C P, LEE H D, et al. Saccharide transfer to sea spray aerosol enhanced by surface activity, calcium, and protein interactions [J]. ACS Earth and Space Chemistry, 2019, 3(11): 2539-2548. doi: 10.1021/acsearthspacechem.9b00197 [93] CARTER-FENK K A, DOMMER A C, FIAMINGO M E, et al. Calcium bridging drives polysaccharide co-adsorption to a proxy sea surface microlayer [J]. Physical Chemistry Chemical Physics:PCCP, 2021, 23(30): 16401-16416. doi: 10.1039/D1CP01407B [94] SCHILL S, BURROWS S, HASENECZ E, et al. The impact of divalent cations on the enrichment of soluble saccharides in primary sea spray aerosol [J]. Atmosphere, 2018, 9(12): 476. doi: 10.3390/atmos9120476 [95] KIRKPATRICK B, PIERCE R, CHENG Y S, et al. Inland transport of aerosolized Florida red tide toxins [J]. Harmful Algae, 2010, 9(2): 186-189. doi: 10.1016/j.hal.2009.09.003 [96] MCCLUSKEY C S, HILL T C J, MALFATTI F, et al. A dynamic link between ice nucleating particles released in nascent sea spray aerosol and oceanic biological activity during two mesocosm experiments [J]. Journal of the Atmospheric Sciences, 2017, 74(1): 151-166. doi: 10.1175/JAS-D-16-0087.1 [97] ICKES L, PORTER G C E, WAGNER R, et al. The ice-nucleating activity of Arctic Sea surface microlayer samples and marine algal cultures [J]. Atmospheric Chemistry and Physics, 2020, 20(18): 11089-11117. doi: 10.5194/acp-20-11089-2020 [98] STANIEC A, VLAHOS P, MONAHAN E C. The role of sea spray in atmosphere–ocean gas exchange [J]. Nature Geoscience, 2021, 14(8): 593-598. doi: 10.1038/s41561-021-00796-z [99] ANDREAS E L. A new sea spray generation function for wind speeds up to 32 m s–1 [J]. Journal of Physical Oceanography, 1998, 28(11): 2175-2184. doi: 10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO;2 [100] 赵栋梁. 海洋飞沫及其对海—气相互作用影响的研究进展 [J]. 地球科学进展, 2012, 27(6): 624-632. ZHAO D L. Progress in sea spray and its effects on air-sea interaction [J]. Advances in Earth Science, 2012, 27(6): 624-632(in Chinese).
[101] GRYTHE H, STRÖM J, KREJCI R, et al. A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements [J]. Atmospheric Chemistry and Physics, 2014, 14(3): 1277-1297. doi: 10.5194/acp-14-1277-2014 [102] MONAHAN E C, MUIRCHEARTAIGH I. Optimal power-law description of oceanic whitecap coverage dependence on wind speed [J]. Journal of Physical Oceanography, 1980, 10(12): 2094-2099. doi: 10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2 [103] DEIKE L. Mass transfer at the ocean–atmosphere interface: The role of wave breaking, droplets, and bubbles [J]. Annual Review of Fluid Mechanics, 2022, 54: 191-194. doi: 10.1146/annurev-fluid-030121-014132 [104] DEIKE L, GHABACHE E, LIGER-BELAIR G, et al. Dynamics of jets produced by bursting bubbles [J]. Physical Review Fluids, 2018, 3: 013603. doi: 10.1103/PhysRevFluids.3.013603 [105] ANGUELOVA M D, WEBSTER F, Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps[J]. Journal of Geophysical Research Atmospheres, 2006, 111(C3): C03017. [106] SALTER M E, ZIEGER P, ACOSTA NAVARRO J C, et al. An empirically derived inorganic sea spray source function incorporating sea surface temperature [J]. Atmospheric Chemistry and Physics, 2015, 15(19): 11047-11066. doi: 10.5194/acp-15-11047-2015 [107] HULTIN K A H, KREJCI R, PINHASSI J, et al. Aerosol and bacterial emissions from Baltic Seawater [J]. Atmospheric Research, 2011, 99(1): 1-14. doi: 10.1016/j.atmosres.2010.08.018 [108] FORESTIERI S D, MOORE K A, MARTINEZ BORRERO R, et al. Temperature and composition dependence of sea spray aerosol production [J]. Geophysical Research Letters, 2018, 45(14): 7218-7225. doi: 10.1029/2018GL078193 [109] MÅRTENSSON E M, NILSSON E D, de LEEUW G, et al. Laboratory simulations and parameterization of the primary marine aerosol production [J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D9): 4297. [110] CALLAGHAN A H, STOKES M D, DEANE G B. The effect of water temperature on air entrainment, bubble plumes, and surface foam in a laboratory breaking-wave analog [J]. Journal of Geophysical Research:Oceans, 2014, 119(11): 7463-7482. doi: 10.1002/2014JC010351 [111] THORPE S A, BOWYER P, WOOLF D K. Some factors affecting the size distributions of oceanic bubbles [J]. Journal of Physical Oceanography, 1992, 22(4): 382-389. doi: 10.1175/1520-0485(1992)022<0382:SFATSD>2.0.CO;2 [112] LIU S, LIU C C, FROYD K D, et al. Sea spray aerosol concentration modulated by sea surface temperature [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(9): e2020583118. doi: 10.1073/pnas.2020583118 [113] PARK J, JANG J, YOON Y J, et al. When river water meets seawater: Insights into primary marine aerosol production[J]. The Science of the Total Environment, 2022, 807(Pt 2): 150866. [114] MAY N W, AXSON J L, WATSON A, et al. Lake spray aerosol generation: A method for producing representative particles from freshwater wave breaking [J]. Atmospheric Measurement Techniques, 2016, 9(9): 4311-4325. doi: 10.5194/amt-9-4311-2016 [115] XU M L, TSONA N T, LI J L, et al. Atmospheric chemical processes of microcystin-LR at the interface of sea spray aerosol [J]. Chemosphere, 2022, 294: 133726. doi: 10.1016/j.chemosphere.2022.133726 [116] CASAS G, MARTÍNEZ-VARELA A, ROSCALES J L, et al. Enrichment of perfluoroalkyl substances in the sea-surface microlayer and sea-spray aerosols in the Southern Ocean [J]. Environmental Pollution (Barking, Essex:1987), 2020, 267: 115512. doi: 10.1016/j.envpol.2020.115512 [117] van ACKER E, de RIJCKE M, LIU Z X, et al. Sea spray aerosols contain the major component of human lung surfactant [J]. Environmental Science & Technology, 2021, 55(23): 15989-16000. [118] PARTANEN A I, DUNNE E M, BERGMAN T, et al. Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state [J]. Atmospheric Chemistry and Physics, 2014, 14(21): 11731-11752. doi: 10.5194/acp-14-11731-2014 [119] VIGNATI E, FACCHINI M C, RINALDI M, et al. Global scale emission and distribution of sea-spray aerosol: Sea-salt and organic enrichment [J]. Atmospheric Environment, 2010, 44(5): 670-677. doi: 10.1016/j.atmosenv.2009.11.013 [120] SPRACKLEN D V, ARNOLD S R, SCIARE J, et al. Globally significant oceanic source of organic carbon aerosol [J]. Geophysical Research Letters, 2008, 35(12): L12811. [121] RINALDI M, DECESARI S, FINESSI E, et al. Primary and secondary organic marine aerosol and oceanic biological activity: Recent results and new perspectives for future studies [J]. Advances in Meteorology, 2010, 2010: 310682. [122] O'DOWD C D, FACCHINI M C, CAVALLI F, et al. Biogenically driven organic contribution to marine aerosol [J]. Nature, 2004, 431(7009): 676-680. doi: 10.1038/nature02959 [123] PARK J, KIM D, LEE K, et al. Effect of phytoplankton biomass in seawater on chemical properties of sea spray aerosols [J]. Marine Pollution Bulletin, 2016, 110(1): 231-237. doi: 10.1016/j.marpolbul.2016.06.058 [124] RINALDI M, FUZZI S, DECESARI S, et al. Is chlorophyll-a the best surrogate for organic matter enrichment in submicron primary marine aerosol? [J]. Journal of Geophysical Research:Atmospheres, 2013, 118(10): 4964-4973. doi: 10.1002/jgrd.50417 [125] FRENEY E, SELLEGRI K, NICOSIA A, et al. Mediterranean nascent sea spray organic aerosol and relationships with seawater biogeochemistry [J]. Atmospheric Chemistry and Physics, 2021, 21(13): 10625-10641. doi: 10.5194/acp-21-10625-2021 [126] SANTANDER M V, SCHIFFER J M, LEE C, et al. Factors controlling the transfer of biogenic organic species from seawater to sea spray aerosol [J]. Scientific Reports, 2022, 12: 3580. doi: 10.1038/s41598-022-07335-9 [127] LEE C, SULTANA C M, COLLINS D B, et al. Advancing model systems for fundamental laboratory studies of sea spray aerosol using the microbial loop [J]. The Journal of Physical Chemistry A, 2015, 119(33): 8860-8870. doi: 10.1021/acs.jpca.5b03488 [128] LONG M S, KEENE W C, KIEBER D J, et al. Light-enhanced primary marine aerosol production from biologically productive seawater [J]. Geophysical Research Letters, 2014, 41(7): 2661-2670. doi: 10.1002/2014GL059436 [129] FLORES J M, BOURDIN G, KOSTINSKI A B, et al. Diel cycle of sea spray aerosol concentration [J]. Nature Communications, 2021, 12: 5476. doi: 10.1038/s41467-021-25579-3 [130] QUINN P K, BATES T S. The case against climate regulation via oceanic phytoplankton sulphur emissions [J]. Nature, 2011, 480(7375): 51-56. doi: 10.1038/nature10580