-
塑料自20世纪初诞生以来,已广泛用于人类社会各个领域. 目前全球已生产了超过8.3亿t的塑料制品[1],大部分塑料制品使用后成为了废物进入自然环境,并造成了极大的环境污染. 塑料废物在进入自然环境过程中,在机械磨损、光照、氧化、水力、微生物和其他风化作用下不断发生老化、裂解(降解)、剥离[2-3],并产生粒径小于5 mm且形态各异的次生微塑料[4]. 微塑料已在大气、土壤、河流和海洋等自然环境中不断被检测出来,并有研究证实其对自然生态环境、生物生长繁殖和人类生命健康存在潜在风险. 微塑料可通过大气沉降和雨水径流进入河流[5-6],且海洋中有70%—80%的微塑料通过河流输入[7]. 可见,河流不仅是微塑料进入水环境的汇,也是微塑料输入海洋环境的源. 由于微塑料具有疏水表面、较大比表面积和稳定结构等特性[8],在环境介质迁移过程中易与重金属、有机污染物等多种污染物发生吸附作用,成为污染物传输载体,并产生联合毒理效应[9],显著增加河流中的污染负荷,进一步危害河流生态系统.
微塑料在河流中的迁移行为受到水温、流速、水位等水文特征的影响,尤其是与河流水动力变化密切相关[10]. 掌握微塑料在河流中的时空分布特征、沉积与迁移规律、吸附/释放污染物行为,对全面评估河流中微塑料的污染负荷与安全风险,实现精准溯源与高效防控均具有重要意义. 鉴于此,本文首先对河流中微塑料赋存形态、丰度和污染特征进行了总结分析,围绕微塑料在河流中的迁移行为详细阐述了水动力条件对微塑料赋存行为、迁移过程及其对污染物吸附/释放影响的研究进展,并提出未来研究方向,皆在为全面了解微塑料在河流中的环境行为提供依据.
河流水动力对微塑料赋存与环境行为的影响研究进展
Advances in impact of river hydrodynamics on occurrence and environmental behaviour of microplastics
-
摘要: 对近年来国内外河流中微塑料的赋存特性和丰度情况进行了总结分析,围绕微塑料在河流中的典型迁移过程探究了水动力变化对微塑料分布、沉积、迁移和吸附/释放污染物等环境行为的影响规律,并提出了未来研究方向. 微塑料在河流中主要以纤维和碎片形状存在,聚乙烯(PE)、聚丙烯(PP)为主,颜色多呈黑白和透明,粒径小于1.0 mm;微塑料在水体和沉积物中的赋存丰度呈现出高度变异性,且迁移沉降过程、吸附/释放污染物等环境行为受水流流速和湍流扰动等水动力变化的显著影响. 未来应重视水动力和多因素耦合作用下微塑料分布与环境行为的影响研究,探明微塑料与其他污染物的联合毒理效应.Abstract: The occurrence characteristics and abundance of microplastics in rivers at home and abroad in recent years are summarized and analyzed. Based on the typical migration process of microplastics in rivers, the effects of hydrodynamic changes on the distribution, deposition, migration, adsorption/release of pollutants and other environmental behaviors of microplastics were explored, and the future research directions were proposed. The microplastics in rivers are mainly in the form of fibers and fragments. Polyethylene (PE) and polypropylene (PP) account for the majority. The colors are mostly black, white and transparent, and the particle size is less than 1.0 mm. The abundance of microplastics in water and sediment is highly variable, and environmental behaviors of microplastics such as migration and deposition, adsorption/release of pollutants are significantly affected by hydrodynamic changes such as flow velocity and turbulence disturbance. In the future, more attention should be paid to the study on the effects of the distribution and environmental behavior of microplastics under the coupling of hydrodynamic and multi-factors, and the joint toxicity of microplastics and other pollutants should be explored.
-
Key words:
- microplastics /
- river /
- hydrodynamics /
- migration /
- pollutant adsorption.
-
表 1 典型河流中微塑料的赋存特性
Table 1. Occurrence characteristics of microplastics in typical rivers
河流
River采样类型
Sampling type采样时间
Sampling time采样地点
Sampling location微塑料赋存*
Microplastic Occurrence经度
Longitude纬度
Latitude类型
Type形状
Shape颜色
Color粒径
Particle size丰度#
Abundance长江[12] 上覆水 2019年
10—11月95°45'—
121°46'E26°14'—
4° 5'NPP(>20%)
PE(>20%)纤维(>50%) 黑/灰色(26.4%—28.9%)
白/透明(25.3%—28.8%)<1.0 mm
(87.5%)20—2580
(avg.& 1270±830)沉积物 PS
(6.5%—10.5%)
PVC
(6.5%—10.5%)
PET
(6.5%—10.5%)蓝/红/黄(10.6%—12.8%)
绿色(4.6%—5.2%)
紫色(0.9%—1.9%)<1.0 mm
(91.3%)7—788
(avg. 286.20±208.62)海河天
津段[13]上覆水 2019年4月 117°10'—
117°42'E38°59'—
40° 0'NPE(44.1%)
PP(36.4%)纤维(46.9%)
碎片(27.2%)
薄膜(22.7%)
颗粒(2.3%)黑色(36.4%)
透明(26.4%)
蓝/绿色(14.9%)<1.0 mm
(85.2%)5600—31400
(avg. 11100±4400)沉积物 PE(42.6%)
PP(22.2%)纤维(74.2%)
碎片(15.7%)
薄膜(6.1%)
颗粒(4.0%)黑色(49.9%)
透明(11.4%)
蓝/绿色(21.7%)<1.0 mm
(64.2%)2141—10035
(avg. 4328±2037)珠江广
州段[14]上覆水 2017年7月 113°10'—
113°30'E23° 0'—
23°15'NPP(35.7%)
PE(28.6%)
PET(28.6%)纤维(80.9%)
碎片(18.9%)
薄膜(2.2%)白色(65.6%) 0.02—1.0 mm
(44.8%)
1.0—2.0 mm
(36.5%)379—7924
(avg. 2724)沉积物 PE(47.6%)
PP(26.2%)纤维(54.7%)
碎片(43.3%)
薄膜(1.9%)黄色(36.2%)
白色(26.8%)
黑色(11.7%)0.02—1.0 mm
(65.3%)
1.0—2.0 mm
(29.5%)80—9597
(avg. 1669)渭河平
原段[15]上覆水 2020年8月 108° 0'—
109°40'E33°45'—
34°30'NPE(41.3%)
PP(14.9%)
PS(13.8%)
PA(12.5%)
PVC(9.6%)
PET(4.8%)碎片(41.24%)
薄膜(41.19%)
纤维(17.58%)白色(43.2%)
黑色(20.7%)
蓝色(11.7%)
其他(10.1%)< 1.0 mm(83.13%)
1.0—2.0 mm
(9.95%)
2.0—5.0 mm
(6.92%)2300—21050
(avg. 9810)乌江[16] 沉积物 2019年9月 105° 0'—
109°30'E26°15'—
30° 0'NPE(42.1%)
PP(32.1%)
PET(17.0%)
PVC(2.5%)碎片(49.1%)
纤维(28.3%)
颗粒(22.6%)白色(48.4%)
黑色(12.6%)
红色(8.8%)< 1.0 mm
(87.4%)
1.0—5.0 mm
(12.6%)75.6—1036.2
(上游avg. 284.6
中游avg. 823.6
下游avg. 101.6)韩国
Nakdong
河[17]上覆水 2017年
2—10月128° 0'—
129° 0'E35° 0'—
37° 0'NPP(41.8%)
PES(23.1%)
PE(9.4%)
PA(5.8%)
PS(2.1%)n.g.$ n.g. <0.3 mm
(74%)avg. 293±83
(上游)
avg. 4760±5242
(下游)沉积物 PP(24.8%)
PE(24.5%)
PES(5.5%)
PVC(5.4%)
PS(5.3%)n.g. n.g. <0.3 mm
(81%)avg. 1970 ± 62 印尼
Cisadane
河[18]上覆水 n.g. 106°35'—
106°40'E6°0—
6°25'SPE(25.41%)
PS(22.95%)
PP(22.13%)碎片(64.15%)
泡沫(20.40%)
纤维(13.43%)
颗粒(1.99%)n.g. 0.5—1.0 mm
(61.69%)
1.0—5.0 mm
(22.64%)
<0.5 mm
(15.67%)13—113
(avg. 45±24)意大利
Ofanto
河[19]上覆水 2017年
2—12月
2018年5月n.g. n.g. PE(76%)
PS(12%)
PP(10%)
PVC(0.7%)碎片(56%)
薄膜(26%)
线状(7.6%)
纤维(6.8%)
颗粒(1%)透明(56%)
黑色(35%)
彩色(11%)n.g. (0.9±0.4)—
(13.0±5.0)注:*括号内数值代表占比;#上覆水的丰度单位n·m−3,沉积物的丰度单位n·kg−1;& avg.代表均值;$ n.g.代表文献数据缺失.
Note: * values in brackets represent proportion; # abundance unit of overlying water n·m−3, and abundance unit of sediment n·kg−1; & avg. represents the mean value; $ n.g. represents missing literature data. -
[1] WERBOWSKI L M, GILBREATH A N, MUNNO K, et al. Urban stormwater runoff: A major pathway for anthropogenic particles, black rubbery fragments, and other types of microplastics to urban receiving waters [J]. ACS ES& T Water, 2021, 1(6): 1420-1428. [2] de CARVALHO A R, GARCIA F, RIEM-GALLIANO L, et al. Urbanization and hydrological conditions drive the spatial and temporal variability of microplastic pollution in the Garonne River [J]. Science of the Total Environment, 2021, 769: 144479. doi: 10.1016/j.scitotenv.2020.144479 [3] ALIMI O S, FARNER BUDARZ J, HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport [J]. Environmental Science & Technology, 2018, 52(4): 1704-1724. [4] SMYTH K, DRAKE J, LI Y R, et al. Bioretention cells remove microplastics from urban stormwater [J]. Water Research, 2021, 191: 116785. doi: 10.1016/j.watres.2020.116785 [5] SANG W J, CHEN Z Y, MEI L J, et al. The abundance and characteristics of microplastics in rainwater pipelines in Wuhan, China [J]. Science of the Total Environment, 2021, 755: 142606. doi: 10.1016/j.scitotenv.2020.142606 [6] WRIGHT S L, ULKE J, FONT A, et al. Atmospheric microplastic deposition in an urban environment and an evaluation of transport [J]. Environment International, 2020, 136: 105411. doi: 10.1016/j.envint.2019.105411 [7] HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities [J]. Science of the Total Environment, 2017, 586: 127-141. doi: 10.1016/j.scitotenv.2017.01.190 [8] TOURINHO P S, KOČÍ V, LOUREIRO S, et al. Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation [J]. Environmental Pollution, 2019, 252: 1246-1256. doi: 10.1016/j.envpol.2019.06.030 [9] LONG M, PAUL-PONT I, HÉGARET H, et al. Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation [J]. Environmental Pollution, 2017, 228: 454-463. doi: 10.1016/j.envpol.2017.05.047 [10] CAI Y M, LI C, ZHAO Y Q. A review of the migration and transformation of microplastics in inland water systems [J]. International Journal of Environmental Research and Public Health, 2021, 19(1): 148. doi: 10.3390/ijerph19010148 [11] ROCHMAN C M, HOH E, HENTSCHEL B T, et al. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris [J]. Environmental Science & Technology, 2013, 47(3): 1646-1654. [12] YUAN W K, CHRISTIE-OLEZA J A, XU E G, et al. Environmental fate of microplastics in the world's third-largest river: Basin-wide investigation and microplastic community analysis [J]. Water Research, 2022, 210: 118002. doi: 10.1016/j.watres.2021.118002 [13] LIU Y, YOU J N, LI Y J, et al. Insights into the horizontal and vertical profiles of microplastics in a river emptying into the sea affected by intensive anthropogenic activities in Northern China [J]. Science of the Total Environment, 2021, 779: 146589. doi: 10.1016/j.scitotenv.2021.146589 [14] LIN L, ZUO L Z, PENG J P, et al. Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China [J]. Science of the Total Environment, 2018, 644: 375-381. doi: 10.1016/j.scitotenv.2018.06.327 [15] BIAN P Y, LIU Y X, ZHAO K H, et al. Spatial variability of microplastic pollution on surface of rivers in a mountain-plain transitional area: A case study in the Chin Ling-Wei River Plain, China [J]. Ecotoxicology and Environmental Safety, 2022, 232: 113298. doi: 10.1016/j.ecoenv.2022.113298 [16] WU F X, WANG J F, JIANG S H, et al. Effect of cascade damming on microplastics transport in rivers: A large-scale investigation in Wujiang River, Southwest China [J]. Chemosphere, 2022, 299: 134455. doi: 10.1016/j.chemosphere.2022.134455 [17] EO S, HONG S H, SONG Y K, et al. Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea [J]. Water Research, 2019, 160: 228-237. doi: 10.1016/j.watres.2019.05.053 [18] SULISTYOWATI L, NURHASANAH, RIANI E, et al. The occurrence and abundance of microplastics in surface water of the midstream and downstream of the Cisadane River, Indonesia [J]. Chemosphere, 2022, 291: 133071. doi: 10.1016/j.chemosphere.2021.133071 [19] CAMPANALE C, STOCK F, MASSARELLI C, et al. Microplastics and their possible sources: The example of Ofanto River in southeast Italy [J]. Environmental Pollution, 2020, 258: 113284. doi: 10.1016/j.envpol.2019.113284 [20] KOUTNIK V S, LEONARD J, ALKIDIM S, et al. Distribution of microplastics in soil and freshwater environments: Global analysis and framework for transport modeling [J]. Environmental Pollution, 2021, 274: 116552. doi: 10.1016/j.envpol.2021.116552 [21] BELZAGUI F, CRESPI M, ÁLVAREZ A, et al. Microplastics' emissions: Microfibers’ detachment from textile garments [J]. Environmental Pollution, 2019, 248: 1028-1035. doi: 10.1016/j.envpol.2019.02.059 [22] 吴香香, 李大鹏, 贾海峰, 等. 江南地区缓流水体中微塑料的表现规律 [J]. 中国给水排水, 2022, 38(3): 62-66. WU X X, LI D P, JIA H F, et al. Microplastic pollution characteristic in slow-flowing water in the south region of the Yangtze River [J]. China Water & Wastewater, 2022, 38(3): 62-66(in Chinese).
[23] ZHAO S Y, ZHU L X, WANG T, et al. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution [J]. Marine Pollution Bulletin, 2014, 86(1/2): 562-568. [24] ZHANG D D, FRASER M A, HUANG W, et al. Microplastic pollution in water, sediment, and specific tissues of crayfish (Procambarus clarkii) within two different breeding modes in Jianli, Hubei Province, China [J]. Environmental Pollution, 2021, 272: 115939. doi: 10.1016/j.envpol.2020.115939 [25] COLE M, LINDEQUE P, FILEMAN E, et al. Microplastic ingestion by zooplankton [J]. Environmental Science & Technology, 2013, 47(12): 6646-6655. [26] LIU P, ZHAN X, WU X W, et al. Effect of weathering on environmental behavior of microplastics: Properties, sorption and potential risks [J]. Chemosphere, 2020, 242: 125193. doi: 10.1016/j.chemosphere.2019.125193 [27] CHOI J S, HONG S H, PARK J W. Evaluation of microplastic toxicity in accordance with different sizes and exposure times in the marine copepod Tigriopus japonicus [J]. Marine Environmental Research, 2020, 153: 104838. doi: 10.1016/j.marenvres.2019.104838 [28] CARBERY M, O'CONNOR W, PALANISAMI T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health [J]. Environment International, 2018, 115: 400-409. doi: 10.1016/j.envint.2018.03.007 [29] MAES T, JESSOP R, WELLNER N, et al. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red [J]. Scientific Reports, 2017, 7: 44501. doi: 10.1038/srep44501 [30] LIU S D, SHANG E X, LIU J N, et al. What have we known so far for fluorescence staining and quantification of microplastics: A tutorial review [J]. Frontiers of Environmental Science & Engineering, 2022, 16(1): 8. [31] SIMMERMAN C B, COLEMAN WASIK J K. The effect of urban point source contamination on microplastic levels in water and organisms in a cold-water stream [J]. Limnology and Oceanography Letters, 2020, 5(1): 137-146. doi: 10.1002/lol2.10138 [32] COOK S, CHAN H L, ABOLFATHI S, et al. Longitudinal dispersion of microplastics in aquatic flows using fluorometric techniques [J]. Water Research, 2020, 170: 115337. doi: 10.1016/j.watres.2019.115337 [33] ZHOU Y F, HE G, JIANG X L, et al. Microplastic contamination is ubiquitous in riparian soils and strongly related to elevation, precipitation and population density [J]. Journal of Hazardous Materials, 2021, 411: 125178. doi: 10.1016/j.jhazmat.2021.125178 [34] RAKESH K, PRABHAKAR S, ANURAG V, et al. Effect of physical characteristics and hydrodynamic conditions on transport and deposition of microplastics in riverine ecosystem [J]. Water, 2021, 13(19): 2710. doi: 10.3390/w13192710 [35] BALLENT A, CORCORAN P L, MADDEN O, et al. Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments [J]. Marine Pollution Bulletin, 2016, 110(1): 383-395. doi: 10.1016/j.marpolbul.2016.06.037 [36] 王薪杰, 王一宁, 赵俭, 等. 河流水沙运动对微塑料运移过程影响研究进展 [J]. 中国环境科学, 2022, 42(2): 863-877. doi: 10.19674/j.cnki.issn1000-6923.20210825.009 WANG X J, WANG Y N, ZHAO J, et al. Recent progress of the effect of suspended sediment movement on the transport of microplastics in rivers [J]. China Environmental Science, 2022, 42(2): 863-877(in Chinese). doi: 10.19674/j.cnki.issn1000-6923.20210825.009
[37] BHATTACHARYA P, LIN S J, TURNER J P, et al. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis [J]. Journal of Physical Chemistry C, 2010, 114(39): 16556-16561. doi: 10.1021/jp1054759 [38] WANG X J, BOLAN N, TSANG D C W, et al. A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications [J]. Journal of Hazardous Materials, 2021, 402: 123496. doi: 10.1016/j.jhazmat.2020.123496 [39] ORIEKHOVA O, STOLL S. Heteroaggregation of nanoplastic particles in the presence of inorganic colloids and natural organic matter [J]. Environmental Science:Nano, 2018, 5(3): 792-799. doi: 10.1039/C7EN01119A [40] WANG X J, LI Y, ZHAO J, et al. UV-induced aggregation of polystyrene nanoplastics: Effects of radicals, surface functional groups and electrolyte [J]. Environmental Science:Nano, 2020, 7(12): 3914-3926. doi: 10.1039/D0EN00518E [41] ZHAO S Y, WARD J E, DANLEY M, et al. Field-based evidence for microplastic in marine aggregates and mussels: Implications for trophic transfer [J]. Environmental Science & Technology, 2018, 52(19): 11038-11048. [42] CHEN C Z, CHEN L, YAO Y, et al. Organotin release from polyvinyl chloride microplastics and concurrent photodegradation in water: Impacts from salinity, dissolved organic matter, and light exposure [J]. Environmental Science & Technology, 2019, 53(18): 10741-10752. [43] UZUN P, FARAZANDE S, GUVEN B. Mathematical modeling of microplastic abundance, distribution, and transport in water environments: A review [J]. Chemosphere, 2022, 288: 132517. doi: 10.1016/j.chemosphere.2021.132517 [44] MAI L, SUN X F, XIA L L, et al. Global riverine plastic outflows [J]. Environmental Science & Technology, 2020, 54(16): 10049-10056. [45] WONG J K H, LEE K K, TANG K H D, et al. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions [J]. The Science of the Total Environment, 2020, 719: 137512. doi: 10.1016/j.scitotenv.2020.137512 [46] XIA F Y, YAO Q W, ZHANG J, et al. Effects of seasonal variation and resuspension on microplastics in river sediments [J]. Environmental Pollution, 2021, 286: 117403. doi: 10.1016/j.envpol.2021.117403 [47] DRUMMOND J D, NEL H A, PACKMAN A I, et al. Significance of hyporheic exchange for predicting microplastic fate in rivers [J]. Environmental Science & Technology Letters, 2020, 7(10): 727-732. [48] BONDELIND M, SOKOLOVA E, NGUYEN A, et al. Hydrodynamic modelling of traffic-related microplastics discharged with stormwater into the Göta River in Sweden [J]. Environmental Science and Pollution Research, 2020, 27(19): 24218-24230. doi: 10.1007/s11356-020-08637-z [49] OCKELFORD A, CUNDY A, EBDON J E. Storm response of fluvial sedimentary microplastics [J]. Scientific Reports, 2020, 10: 1865. doi: 10.1038/s41598-020-58765-2 [50] IMHOF H K, IVLEVA N P, SCHMID J, et al. Contamination of beach sediments of a subalpine lake with microplastic particles [J]. Current Biology, 2013, 23(19): R867-R868. doi: 10.1016/j.cub.2013.09.001 [51] FISCHER E K, PAGLIALONGA L, CZECH E, et al. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy) [J]. Environmental Pollution, 2016, 213: 648-657. doi: 10.1016/j.envpol.2016.03.012 [52] 陈圣盛, 李卫明, 张坤, 等. 香溪河流域微塑料的分布特征及其迁移规律分析 [J]. 环境科学, 2022, 43(6): 3077-3087. doi: 10.13227/j.hjkx.202109268 CHEN S S, LI W M, ZHANG K, et al. Distribution characteristics of microplastics and their migration patterns in Xiangxi River Basin [J]. Environmental Science, 2022, 43(6): 3077-3087(in Chinese). doi: 10.13227/j.hjkx.202109268
[53] YAN M Q, WANG L, DAI Y Y, et al. Behavior of microplastics in inland waters: Aggregation, settlement, and transport [J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(4): 700-709. doi: 10.1007/s00128-020-03087-2 [54] HABERSTROH C, ARIAS M, YIN Z W, et al. Effects of hydrodynamics on the cross-sectional distribution and transport of plastic in an urban coastal river [J]. Water Environment Research, 2020, 93(6): 186-200. [55] TIBBETTS J, KRAUSE S, LYNCH I, et al. Abundance, distribution, and drivers of microplastic contamination in urban river environments [J]. Water, 2018, 10(11): 1597. doi: 10.3390/w10111597 [56] 顾伟康. 水动力变化条件下三峡库区典型支流微塑料的分布及归趋[D]. 重庆: 重庆大学, 2019. GU W K. The distribution & fate of microplastic in the typical tributary of Three Gorges Reservoir(TGR): The influence of hydrodynamic properties[D]. Chongqing: Chongqing University, 2019(in Chinese).
[57] NIU L H, LI Y Y, LI Y, et al. New insights into the vertical distribution and microbial degradation of microplastics in urban river sediments [J]. Water Research, 2021, 188: 116449. doi: 10.1016/j.watres.2020.116449 [58] REARDON K E, BOMBARDELLI F A, MORENO-CASAS P A, et al. Wind-driven nearshore sediment resuspension in a deep lake during winter [J]. Water Resources Research, 2014, 50(11): 8826-8844. doi: 10.1002/2014WR015396 [59] 徐沛, 彭谷雨, 朱礼鑫, 等. 长江口微塑料时空分布及风险评价 [J]. 中国环境科学, 2019, 39(5): 2071-2077. doi: 10.19674/j.cnki.issn1000-6923.2019.0248 XU P, PENG G Y, ZHU L X, et al. Spatial-temporal distribution and pollution load of microplastics in the Changjiang Estuary [J]. China Environmental Science, 2019, 39(5): 2071-2077(in Chinese). doi: 10.19674/j.cnki.issn1000-6923.2019.0248
[60] XUE B M, ZHANG L L, LI R L, et al. Underestimated microplastic pollution derived from fishery activities and hidden in deep sediment [J]. Environmental Science & Technology, 2020, 54(4): 2210-2217. [61] 刘治君, 杨凌肖, 王琼, 等. 微塑料在陆地水环境中的迁移转化与环境效应 [J]. 环境科学与技术, 2018, 41(4): 59-65,90. LIU Z J, YANG L X, WANG Q, et al. Migration and transformation of microplastics in terrestrial waters and effects on eco-environment [J]. Environmental Science & Technology, 2018, 41(4): 59-65,90(in Chinese).
[62] SANTANA-VIERA S, MONTESDEOCA-ESPONDA S, GUEDES-ALONSO R, et al. Organic pollutants adsorbed on microplastics: Analytical methodologies and occurrence in oceans [J]. Trends in Environmental Analytical Chemistry, 2021, 29: e00114. doi: 10.1016/j.teac.2021.e00114 [63] 陈蕾, 高山雪, 徐一卢. 塑料添加剂向生态环境中的释放与迁移研究进展 [J]. 生态学报, 2021, 41(8): 3315-3324. CHEN L, GAO S X, XU Y L. Progress on release and migration of plastic additives to ecological environment [J]. Acta Ecologica Sinica, 2021, 41(8): 3315-3324(in Chinese).
[64] 张楠, 徐一卢, 陈蕾. 风化作用对微塑料影响的研究 [J]. 应用化工, 2020, 49(12): 3191-3194. ZHANG N, XU Y L, CHEN L. Study on the influence of weathering on microplastics [J]. Applied Chemical Industry, 2020, 49(12): 3191-3194(in Chinese).
[65] PALUSELLI A, FAUVELLE V, GALGANI F, et al. Phthalate release from plastic fragments and degradation in seawater [J]. Environmental Science & Technology, 2019, 53(1): 166-175. [66] CHENG H F, LUO H, HU Y A, et al. Release kinetics as a key linkage between the occurrence of flame retardants in microplastics and their risk to the environment and ecosystem: A critical review [J]. Water Research, 2020, 185: 116253. doi: 10.1016/j.watres.2020.116253 [67] SONG Y K, HONG S H, JANG M, et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type [J]. Environmental Science & Technology, 2017, 51(8): 4368-4376. [68] SUN Y R, YUAN J H, ZHOU T, et al. Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: A systematic review [J]. Environmental Pollution, 2020, 265: 114864. doi: 10.1016/j.envpol.2020.114864 [69] da COSTA J P, NUNES A R, SANTOS P S M, et al. Degradation of polyethylene microplastics in seawater: Insights into the environmental degradation of polymers [J]. Journal of Environmental Science and Health, Part A, 2018, 53(9): 866-875. doi: 10.1080/10934529.2018.1455381 [70] MASUD A, CHAVEZ SORIA N G, AGA D S, et al. Adsorption and advanced oxidation of diverse pharmaceuticals and personal care products (PPCPs) from water using highly efficient rGO-nZVI nanohybrids [J]. Environmental Science:Water Research & Technology, 2020, 6(8): 2223-2238. [71] ZHOU L J, YING G G, ZHAO J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in Northern China [J]. Environmental Pollution, 2011, 159(7): 1877-1885. doi: 10.1016/j.envpol.2011.03.034 [72] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. [73] ZHANG G D, LU S Y, WANG Y Q, et al. Occurrence of antibiotics and antibiotic resistance genes and their correlations in Lower Yangtze River, China [J]. Environmental Pollution, 2020, 257: 113365. doi: 10.1016/j.envpol.2019.113365 [74] XU W H, YAN W, LI X D, et al. Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: Concentrations, mass loading and ecological risks [J]. Environmental Pollution, 2013, 182: 402-407. doi: 10.1016/j.envpol.2013.08.004 [75] FAN X L, ZOU Y F, GENG N, et al. Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process [J]. Journal of Hazardous Materials, 2021, 401: 123363. doi: 10.1016/j.jhazmat.2020.123363 [76] 邵博群, 庞蕊蕊, 李烨, 等. 微塑料和其他新兴污染物相互作用研究进展 [J]. 环境科学与技术, 2021, 44(7): 214-222. SHAO B Q, PANG R R, LI Y, et al. Research progress on interaction between microplastics and other emerging contaminants [J]. Environmental Science & Technology, 2021, 44(7): 214-222(in Chinese).
[77] LI J, ZHANG K N, ZHANG H. Adsorption of antibiotics on microplastics [J]. Environmental Pollution, 2018, 237: 460-467. doi: 10.1016/j.envpol.2018.02.050 [78] HÜFFER T, HOFMANN T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution [J]. Environmental Pollution, 2016, 214: 194-201. doi: 10.1016/j.envpol.2016.04.018 [79] BHAGAT K, BARRIOS A C, RAJWADE K, et al. Aging of microplastics increases their adsorption affinity towards organic contaminants [J]. Chemosphere, 2022, 298: 134238. doi: 10.1016/j.chemosphere.2022.134238 [80] WANG F, SHIH K M, LI X Y. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics [J]. Chemosphere, 2015, 119: 841-847. doi: 10.1016/j.chemosphere.2014.08.047 [81] GUO X Y, WANG X L, ZHOU X Z, et al. Sorption of four hydrophobic organic compounds by three chemically distinct polymers: Role of chemical and physical composition [J]. Environmental Science & Technology, 2012, 46(13): 7252-7259. [82] ATUGODA T, WIJESEKARA H, WERELLAGAMA D R I B, et al. Adsorptive interaction of antibiotic ciprofloxacin on polyethylene microplastics: Implications for vector transport in water [J]. Environmental Technology & Innovation, 2020, 19: 100971. [83] HUANG S L, NG C O, GUO Q Z. Experimental investigation of the effect of flow turbulence and sediment transport patterns on the adsorption of cadmium ions onto sediment particles [J]. Journal of Environmental Sciences, 2007, 19(6): 696-703. doi: 10.1016/S1001-0742(07)60116-8 [84] 肖洋, 成浩科, 唐洪武, 等. 水动力作用对污染物在河流水沙两相中分配的影响研究进展 [J]. 河海大学学报(自然科学版), 2015, 43(5): 480-488. XIAO Y, CHENG H K, TANG H W, et al. Review of influence of hydrodynamic action on distribution of pollutants in water and sediment in river [J]. Journal of Hohai University (Natural Sciences), 2015, 43(5): 480-488(in Chinese).