-
2019年年末,突发性流行病新冠肺炎席卷全球,对人类的身体健康和生活生产方式产生了巨大影响,进而改变了人类活动对大气环境的影响. 疫情发生后,我国迅速反应,实施了一系列最为严格的管控措施,使得新冠疫情在国内的蔓延得到有效控制,相关的措施也为世界各国疫情防控提供了有效的参考模板[1-2]. 在疫情得到有效控制的同时,CO、NO2、PM2.5、SO2、PM10等常规污染物的人为排放也受到直接影响,在严格管控期间,限制交通出行、居家隔离、一些企业停工停产等措施会使大气污染物的移动源、工业源、扬尘源等大幅消减. 而长时间以来,关中地区是我国大气污染较为严重的地区,在本地污染源以及周边区域传输污染源和本地气象条件等共同作用下,冬季区域性重污染天气时有发生,受到了社会各界广泛关注,而疫情爆发正值冬春季节,对人为减排带来的空气质量改善的研究将更加有利于帮助城市应对重污染天气. 大气中的污染物浓度受自然排放源与人为排放源的综合影响,对比疫情前后常规污染物浓度以及颗粒物化学组成的变化,可以分析在保证人民基本生产生活条件下人为减排对污染物浓度减小的极限[3-4]以及极限减排下颗粒物化学组分和毒性的变化.
新冠疫情期间严格的管控措施对大气污染物来说是一次极限人为减排的“实验”,研究人为管控导致的污染源减排对大气污染的影响成为许多学者的关注点[5],有学者对类似的特殊时期的大气污染进行了分析研究,赵辉等[6]利用G20峰会期间杭州及其周边城市的空气质量监测数据,结合气象因素分析其时空分布特征,评估了保障措施对空气质量的影响. 赵军平[7]等研究了杭州G20峰会期间气象条件对空气质量的影响. 周亚端等[8]分析对比了湖北省重点行业疫情管控前后的污染物排放情况. 乐旭等[9]通过多种数据的计算,分析了我国新冠肺炎疫情期间人为碳排放和主要大气污染物的变化. 很多研究都表明,人为减排对环境空气质量提升效果是非常显著的. 而对大气污染物的研究中,颗粒物的化学组成也是很多学者关注的重点. 毛敏娟等[10]研究了杭州G20峰会期间的大气污染物减排措施对大气中无机水溶性离子特征的影响. Wang等[11]利用卫星和地面数据,包括颗粒物(PM)、痕量气体、水溶性离子(WSIs)和炭黑(BC),评估了2019新冠疫情封锁期间长江三角洲的空气质量,分析了封锁期间常规大气污染物及颗粒物中水溶性离子的变化情况,发现在封锁期间,NO3−、NH4+、SO42−、Cl−、Ca2+、K+和Na+浓度均有下降,而Mg2+则上升了30.2%. Xiong等[12]收集了嘉兴从2020年1月2日至4月25日的PM2.5样品,分析了其化学成分(包括碳组分、水溶性离子(WSIs)和无机元素),结果表明,疫情管控期间,所有数据都有所下降. 颗粒物的化学组分决定着颗粒物的毒性、与其他大气污染物的反应以及对人体健康的危害程度,而改善空气质量的根本目标是人类健康发展,所以在控制常规大气污染物排放的同时,研究颗粒物中化学组分的变化也是至关重要的.
汾渭平原是中国大气污染重点防控区域,而关中地区是汾渭平原重要组成部分,目前是全国大气污染特别是颗粒物污染最为严重的地区之一. 本研究以陕西省关中地区为研究对象,考察该地区大气污染物种类、来源和形成机制,解析PM2.5中水溶性离子的浓度变化特征以及疫情管控前后的空气质量差异,通过对疫情严控前后半年内的关中主要城市大气污染物的浓度水平、变化趋势、气象条件等特征的对比分析,解析疫情发生前后大气污染物污染特征的差异,结合气象资料和政府行动措施,科学评估疫情期间人为管控对大气污染特征和潜在来源的影响并提出科学建议,以期为关中地区大气污染治理提供科学参考.
疫情管控对关中城市群大气污染特征及颗粒物化学组成的影响
Influence of epidemic control on air pollution characteristics and chemical composition of particulate matter in Guanzhong urban agglomeration
-
摘要: 新冠肺炎疫情的暴发对生产生活模式产生了重大影响,进而改变了大气污染现状和规律,是一次极限减排的“大气实验”. 本研究以中国典型大气污染控制区的关中城市群为研究对象,考察该地区疫情管控下大气污染物污染特征、来源和形成机制,解析了大气细颗粒物(PM2.5)中化学组分的浓度变化特征. 结果显示,除O3外,其余大气污染物浓度的整体变化趋势均表现为管控前>管控后,与全国趋势一致、但程度不同. 新冠肺炎疫情的社会隔离措施大幅度削减了各类排放源,西安市、咸阳市、铜川市、宝鸡市、渭南市等5个城市PM10、PM2.5、NO2和CO浓度值明显降低,其中PM10、SO2、NO2、CO在疫情期间的浓度达到近5年来历史最低. O3浓度在封城期间却有显著上升的现象,表明大气氧化性可能在燃烧排放减少的背景下由于NO2滴定效应减小而得到强化. 对西安市PM2.5中水溶性阴阳离子浓度对比分析结果显示,Ca2+、Na+、Cl-、NO3-、NH4+、SO42-等几种主要水溶性离子浓度在疫情管控后明显降低,由于来源和形成机制不同,NH4+、SO42-离子在管控后占比有所上升,其他4种离子占比都有所下降,这与对交通源和工业源的大幅消减以及颗粒物中NH4+和SO42-、NO3-之间的二次反应有很大关系. 特别是,交通源排放的减排对大气污染物NO2、CO、PM浓度的减小是显著的,因此未来在城市汽车尾气治理、机动车低耗能低排放以及清洁能源等方面多加投入是必要的. 适当的排放源管控有利于大气环境质量的改善,但除了要考虑污染源和减排目标以外,还需要结合当地大气污染特征和气象条件、考虑O3的“滴定效应”,实现大气颗粒物与O3协同控制,改变颗粒物浓度下降而O3污染加剧的局面.Abstract: The outbreak of the COVID-19 epidemic situation has had a significant impact on production and life patterns, which has changed the present situation and law of air pollution. In this study, the Guanzhong area, a typical air pollution control area in China, was taken as the research object. The types, sources, and formation mechanism of air pollutants under epidemic control in this area were investigated, as well as the concentration variation characteristics of chemical components in atmospheric fine particles (PM2.5). The results show that, except for O3, the overall change trend in the average concentration of other air pollutants before control > after control. However, the concentration of O3 increased significantly during the city lockdown, indicating that the atmospheric oxidation may be strengthened due to the reduction of the NO2 in the context of reduced combustion emissions. The social isolation measures during the COVID-19 epidemic have greatly reduced the concentrations of various pollutants, and the concentrations of PM10, PM2.5, NO2 and CO have obviously decreased in five cities, including Xi 'an, Xianyang, Tongchuan, Baoji and Weinan. During the epidemic, the concentrations of PM10, SO2, NO2 and CO reached the lowest level in the past five years. A comparative analysis of the concentration of water-soluble anions and cations in PM2.5 in Xi’an shows that the concentration of several main water-soluble ions such as Ca2+, Na+, Cl-, NO3-, NH4+, SO42-decreased significantly after the epidemic control. During the lockdown, the proportion of NH4+ and SO42-ions increased due to different sources, whereas the proportion of other four ions decreased, which is related to the strict control of traffic sources and the chemical reaction between NH4+ and NO3-and SO42- in particulate matter. NO2, CO, PM and other pollutants are greatly reduced after control. Automobile exhaust emission reduction is very important for air pollution control. In the future, more invest would be required in urban automobile exhaust control, low energy consumption and emission of motor vehicles, and clean energy. Proper emission source control is beneficial to the improvement of atmospheric environmental quality. In order to achieve a win-win situation of economic development and ecological health, it is necessary to combine local air pollution characteristics and meteorological conditions, when developing pollution source control scheme, in addition to pollution sources and emission reduction targets.
-
表 1 关中地区疫情严控期不同风力等级天数统计表 (d)
Table 1. Statistical table of days with different wind grades during epidemic control period in Guanzhong Area (d)
时期
Period风力等级
Wind scale西安
Xi’an铜川
Tongchuan宝鸡
Baoji咸阳
Xianyang渭南
Weinan严控前
Strictly control before1级(0.3—1.5 m·s−1) 5 6 14 5 3 2级(1.6—3.3 m·s−1) 9 9 1 8 11 3级(3.4—5.4 m·s−1) 1 0 0 2 1 严控期
After strict control1级(0.3—1.5 m·s−1) 7 5 14 3 0 2级(1.6—3.3 m·s−1) 8 11 2 12 15 3级(3.4—5.4 m·s−1) 1 0 0 1 1 严控前和严控期关中地区整体风力等级以2级为主,扩散条件基本一致.
Before and during the strict control period, the overall wind power level in Guanzhong area is mainly Level 2, and the diffusion conditions are basically the same. -
[1] 周泽龙. 从抗击新冠肺炎疫情看中国特色社会主义制度的显著优势 [J]. 理论建设, 2020, 36(1): 5-10. ZHOU Z L. Observing the significant advantages of the socialist system with Chinese characteristics from the fight against COVID-19 [J]. Theory Construction, 2020, 36(1): 5-10(in Chinese).
[2] 钱智勇, 刘思远. 疫情下中国特色社会主义基本经济制度的优越性透析 [J]. 当代经济管理, 2020, 42(6): 1-5. QIAN Z Y, LIU S Y. An analysis of the superiorities of the basic economic system of socialism with Chinese characteristics under the epidemic situation [J]. Contemporary Economic Management, 2020, 42(6): 1-5(in Chinese).
[3] 蔡晓斌, 任永鹏, 张媛, 等. 利用卫星遥感NO2监测结果分析COVID-19疫情对我国社会经济活动的短期影响 [J]. 华中师范大学学报(自然科学版), 2020, 54(6): 1045-1050. CAI X B, REN Y P, ZHANG Y, et al. The short-term impact estimate of COVID-19 epidemic on social-economic activity of China by using remotely sensed NO2 observations [J]. Journal of Central China Normal University (Natural Sciences), 2020, 54(6): 1045-1050(in Chinese).
[4] 陶金花, 范萌, 顾坚斌, 等. 新冠病毒疫情期间复工复产卫星遥感监测 [J]. 遥感学报, 2020, 24(7): 824-836. TAO J H, FAN M, GU J B, et al. Satellite observations of the return-to-work over China during the period of COVID-19 [J]. Journal of Remote Sensing, 2020, 24(7): 824-836(in Chinese).
[5] WANG P F, CHEN K Y, ZHU S Q, et al. Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak [J]. Resources, Conservation and Recycling, 2020, 158: 104814. doi: 10.1016/j.resconrec.2020.104814 [6] 赵辉, 郑有飞, 魏莉, 等. G20峰会期间杭州及周边地区空气质量的演变与评估 [J]. 中国环境科学, 2017, 37(6): 2016-2024. ZHAO H, ZHENG Y F, WEI L, et al. Evolution and evaluation of air quality in Hangzhou and its surrounding area during G20 summit [J]. China Environmental Science, 2017, 37(6): 2016-2024(in Chinese).
[7] 赵军平, 罗玲, 郑亦佳, 等. G20峰会期间杭州地区空气质量特征及气象条件分析 [J]. 环境科学学报, 2017, 37(10): 3885-3893. ZHAO J P, LUO L, ZHENG Y J, et al. Analysis on air quality characteristics and meteorological conditions in Hangzhou during the G20 summit [J]. Acta Scientiae Circumstantiae, 2017, 37(10): 3885-3893(in Chinese).
[8] 周亚端, 朱宽广, 黄凡, 等. 新冠肺炎疫情期间湖北省大气污染物减排效果评估 [J]. 环境科学与技术, 2020, 43(3): 228-236. ZHOU Y D, ZHU K G, HUANG F, et al. Emission reductions and air quality improvements during the COVID-19 pandemic in Hubei Province [J]. Environmental Science & Technology, 2020, 43(3): 228-236(in Chinese).
[9] 乐旭, 雷亚栋, 周浩, 等. 新冠肺炎疫情期间中国人为碳排放和大气污染物的变化 [J]. 大气科学学报, 2020, 43(2): 265-274. YUE X, LEI Y D, ZHOU H, et al. Changes of anthropogenic carbon emissions and air pollutants during the COVID-19 epidemic in China [J]. Transactions of Atmospheric Sciences, 2020, 43(2): 265-274(in Chinese).
[10] 毛敏娟, 杜荣光, 吴建. 杭州G20减排措施对大气水溶性离子特征的影响 [J]. 中国环境科学, 2019, 39(6): 2283-2290. MAO M J, DU R G, WU J. Influences of the G20 emission reduction on characteristics of water-soluble ions in PM in Hangzhou [J]. China Environmental Science, 2019, 39(6): 2283-2290(in Chinese).
[11] WANG H L, MIAO Q, SHEN L J, et al. Characterization of the aerosol chemical composition during the COVID-19 lockdown period in Suzhou in the Yangtze River Delta, China [J]. Journal of Environmental Sciences (China), 2021, 102: 110-122. doi: 10.1016/j.jes.2020.09.019 [12] XIONG C F, ZHANG Y L, YAN J, et al. Chemical composition characteristics and source analysis of PM2.5 in Jiaxing, China: Insights into the effect of COVID-19 outbreak [J]. Environmental Technology, 2021: 1-29. [13] DATTA A, RAHMAN M H, SURESH R. Did the COVID-19 lockdown in Delhi and Kolkata improve the ambient air quality of the two cities? [J]. Journal of Environmental Quality, 2021, 50(2): 485-493. doi: 10.1002/jeq2.20192 [14] QIAN Y, SCHERE L, TUKKER A, et al. China's potential SO2 emissions from coal by 2050 [J]. Energy Policy, 2020, 147: 111856. doi: 10.1016/j.enpol.2020.111856 [15] 叶堃, 李闯, 徐银鸿, 等. 陕西典型地区民用燃煤炉具取暖污染减排效果及影响因素研究 [J]. 煤炭加工与综合利用, 2020(10): 80-85, 5. YE K, LI C, XU Y H. et al. The study on effects and influencing factors of pollution reduction of household coal-fired stove heating in typical areas of Shaanxi Province [J]. Coal Processing & Comprehensive Utilization, 2020(10): 80-85, 5(in Chinese).
[16] 孟祥瑞, 张凯山. 成都市道路移动源减排对空气质量的短期影响 [J]. 环境科学学报, 2021, 41(4): 1250-1258. MENG X R, ZHANG K S. The short-term effect of on-road vehicle emissions reduction on air quality in Chengdu [J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1250-1258(in Chinese).
[17] 姬杨蓓蓓, 莫世杰, 成枫. 公共交通管控对新冠肺炎病毒(COVID-19)疫情爆发期的影响分析 [J]. 重庆交通大学学报(自然科学版), 2020, 39(8): 20-28. JI Y, MO S J, CHENG F. Influence analysis of public transport controls against novel coronavirus pneumonia(COVID-19) during outbreak period [J]. Journal of Chongqing Jiaotong University (Natural Science Science), 2020, 39(8): 20-28(in Chinese).
[18] 赵雪, 沈楠驰, 李令军, 等. COVID-19疫情期间京津冀大气污染物变化及影响因素分析 [J]. 环境科学, 2021, 42(3): 1205-1214. ZHAO X, SHEN N C, LI L J, et al. Analysis of changes and factors influencing air pollutants in the Beijing-Tianjin-Hebei region during the COVID-19 pandemic [J]. Environmental Science, 2021, 42(3): 1205-1214(in Chinese).
[19] LU Q, ZHENG J Y, YE S Q, et al. Emission trends and source characteristics of SO2, NOx, PM10 and VOCs in the Pearl River Delta region from 2000 to 2009 [J]. Atmospheric Environment, 2013, 76: 11-20. doi: 10.1016/j.atmosenv.2012.10.062 [20] LE T H, WANG Y, LIU L, et al. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China [J]. Science, 2020, 369(6504): 702-706. doi: 10.1126/science.abb7431 [21] HUANG F F, LI X, WANG C, et al . PM2.5 spatiotemporal variations and the relationship with meteorological factors during 2013-2014 in Beijing, China [J]. PLoS One, 2015, 10(11): e0141642. doi: 10.1371/journal.pone.0141642 [22] CHEN K, WANG M, HUANG C H, et al. Air pollution reduction and mortality benefit during the COVID-19 outbreak in China [J]. The Lancet. Planetary Health, 2020, 4(6): e210-e212. doi: 10.1016/S2542-5196(20)30107-8 [23] 余锋, 李小飞, 李锦雯, 等. 新冠疫情对关中盆地空气质量的影响 [J]. 陕西科技大学学报, 2021, 39(4): 28-39. doi: 10.3969/j.issn.1000-5811.2021.04.005 YU F, LI X F, LI J W, et al. Effects of Corona Virus Disease 2019 on air quality in Guanzhong Basin [J]. Journal of Shaanxi University of Science & Technology, 2021, 39(4): 28-39(in Chinese). doi: 10.3969/j.issn.1000-5811.2021.04.005
[24] WANG H L, HUANG C, TAO W, et al. Seasonality and reduced nitric oxide titration dominated ozone increase during COVID-19 lockdown in eastern China [J]. npj Climate and Atmospheric Science, 2022, 5(1): 1-7. doi: 10.1038/s41612-021-00225-3 [25] 刘跃斌, 张远, 张逸冰, 等. 邯郸市新冠疫情前后空气质量指数(AQI)对比与疫情防控期间大气污染特征分析 [J]. 环境化学, 2021, 40(12): 3743-3754. doi: 10.7524/j.issn.0254-6108.2021022402 LIU Y B, ZHANG Y, ZHANG Y B, et al. Comparison of air quality index(AQI) before and after COVID-19 in Handan City and analysis of air pollution characteristics during COVID-19 prevention and control [J]. Environmental Chemistry, 2021, 40(12): 3743-3754(in Chinese). doi: 10.7524/j.issn.0254-6108.2021022402
[26] 杨雪, 安馨悦, 刘玉启, 等. 山东临沂大气夏季典型时段臭氧污染特征及其控制因素分析 [J]. 环境科学, 2022, 43(2): 696-706. YANG X, AN X Y, LIU Y Q, et al. Pollution characteristic and control factor analysis of atmospheric ozone during summer typical periods in Linyi, Shandong [J]. Environmental Science, 2022, 43(2): 696-706(in Chinese).
[27] 王占山, 李云婷, 张大伟, 等. 2014年APEC会议期间北京市空气质量分析 [J]. 环境科学学报, 2016, 36(2): 675-683. WANG Z S, LI Y T, ZHANG D W, et al. Analysis on air quality in Beijing during the 2014 APEC conference [J]. Acta Scientiae Circumstantiae, 2016, 36(2): 675-683(in Chinese).
[28] 鲍宗炜, 张宏, 周志刚, 等. 兰溪市PM2.5中水溶性离子的组成特征及季节变化 [J]. 环境科学学报, 2021, 41(5): 1727-1733. BAO Z W, ZHANG H, ZHOU Z G, et al. Compositional characteristics and seasonal variations of the water-soluble ions in PM2.5 in Lanxi [J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1727-1733(in Chinese).
[29] 黄含含, 王羽琴, 李升苹, 等. 西安市PM2.5中水溶性离子的季节变化特征 [J]. 环境科学, 2020, 41(6): 2528-2535. HUANG H H, WANG Y Q, LI S P, et al. Seasonal variation of water-soluble ions in PM2.5 in Xi'an [J]. Environmental Science, 2020, 41(6): 2528-2535(in Chinese).
[30] GAO X M, YANG L X, CHENG S H, et al. Semi-continuous measurement of water-soluble ions in PM2.5 in Jinan, China: temporal variations and source apportionments [J]. Atmospheric Environment, 2011, 45(33): 6048-6056. doi: 10.1016/j.atmosenv.2011.07.041 [31] HUANG X F, YU J Z, YUAN Z B, et al. Source analysis of high particulate matter days in Hong Kong [J]. Atmospheric Environment, 2009, 43(6): 1196-1203. doi: 10.1016/j.atmosenv.2008.10.013 [32] 邹强, 姚玉刚. 春节烟花爆竹燃放期间苏州市区PM2.5组分特征分析 [J]. 中国环境监测, 2014, 30(4): 100-106. ZOU Q, YAO Y G. The analysis of characteristics of PM2.5 components during set-off fireworks period of spring festival in Suzhou City [J]. Environmental Monitoring in China, 2014, 30(4): 100-106(in Chinese).
[33] 申进朝, 陈纯, 多克辛. 部分中原城市PM2.5中水溶性离子污染特征 [J]. 环境科学与技术, 2014, 37(7): 153-156. SHEN J C, CHEN C, DUO K X. Pollution characteristics of water soluble ions in PM2.5 in some cities of central China [J]. Environmental Science & Technology, 2014, 37(7): 153-156(in Chinese).