[1] |
周泽龙. 从抗击新冠肺炎疫情看中国特色社会主义制度的显著优势 [J]. 理论建设, 2020, 36(1): 5-10.
ZHOU Z L. Observing the significant advantages of the socialist system with Chinese characteristics from the fight against COVID-19 [J]. Theory Construction, 2020, 36(1): 5-10(in Chinese).
|
[2] |
钱智勇, 刘思远. 疫情下中国特色社会主义基本经济制度的优越性透析 [J]. 当代经济管理, 2020, 42(6): 1-5.
QIAN Z Y, LIU S Y. An analysis of the superiorities of the basic economic system of socialism with Chinese characteristics under the epidemic situation [J]. Contemporary Economic Management, 2020, 42(6): 1-5(in Chinese).
|
[3] |
蔡晓斌, 任永鹏, 张媛, 等. 利用卫星遥感NO2监测结果分析COVID-19疫情对我国社会经济活动的短期影响 [J]. 华中师范大学学报(自然科学版), 2020, 54(6): 1045-1050.
CAI X B, REN Y P, ZHANG Y, et al. The short-term impact estimate of COVID-19 epidemic on social-economic activity of China by using remotely sensed NO2 observations [J]. Journal of Central China Normal University (Natural Sciences), 2020, 54(6): 1045-1050(in Chinese).
|
[4] |
陶金花, 范萌, 顾坚斌, 等. 新冠病毒疫情期间复工复产卫星遥感监测 [J]. 遥感学报, 2020, 24(7): 824-836.
TAO J H, FAN M, GU J B, et al. Satellite observations of the return-to-work over China during the period of COVID-19 [J]. Journal of Remote Sensing, 2020, 24(7): 824-836(in Chinese).
|
[5] |
WANG P F, CHEN K Y, ZHU S Q, et al. Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak [J]. Resources, Conservation and Recycling, 2020, 158: 104814. doi: 10.1016/j.resconrec.2020.104814
|
[6] |
赵辉, 郑有飞, 魏莉, 等. G20峰会期间杭州及周边地区空气质量的演变与评估 [J]. 中国环境科学, 2017, 37(6): 2016-2024.
ZHAO H, ZHENG Y F, WEI L, et al. Evolution and evaluation of air quality in Hangzhou and its surrounding area during G20 summit [J]. China Environmental Science, 2017, 37(6): 2016-2024(in Chinese).
|
[7] |
赵军平, 罗玲, 郑亦佳, 等. G20峰会期间杭州地区空气质量特征及气象条件分析 [J]. 环境科学学报, 2017, 37(10): 3885-3893.
ZHAO J P, LUO L, ZHENG Y J, et al. Analysis on air quality characteristics and meteorological conditions in Hangzhou during the G20 summit [J]. Acta Scientiae Circumstantiae, 2017, 37(10): 3885-3893(in Chinese).
|
[8] |
周亚端, 朱宽广, 黄凡, 等. 新冠肺炎疫情期间湖北省大气污染物减排效果评估 [J]. 环境科学与技术, 2020, 43(3): 228-236.
ZHOU Y D, ZHU K G, HUANG F, et al. Emission reductions and air quality improvements during the COVID-19 pandemic in Hubei Province [J]. Environmental Science & Technology, 2020, 43(3): 228-236(in Chinese).
|
[9] |
乐旭, 雷亚栋, 周浩, 等. 新冠肺炎疫情期间中国人为碳排放和大气污染物的变化 [J]. 大气科学学报, 2020, 43(2): 265-274.
YUE X, LEI Y D, ZHOU H, et al. Changes of anthropogenic carbon emissions and air pollutants during the COVID-19 epidemic in China [J]. Transactions of Atmospheric Sciences, 2020, 43(2): 265-274(in Chinese).
|
[10] |
毛敏娟, 杜荣光, 吴建. 杭州G20减排措施对大气水溶性离子特征的影响 [J]. 中国环境科学, 2019, 39(6): 2283-2290.
MAO M J, DU R G, WU J. Influences of the G20 emission reduction on characteristics of water-soluble ions in PM in Hangzhou [J]. China Environmental Science, 2019, 39(6): 2283-2290(in Chinese).
|
[11] |
WANG H L, MIAO Q, SHEN L J, et al. Characterization of the aerosol chemical composition during the COVID-19 lockdown period in Suzhou in the Yangtze River Delta, China [J]. Journal of Environmental Sciences (China), 2021, 102: 110-122. doi: 10.1016/j.jes.2020.09.019
|
[12] |
XIONG C F, ZHANG Y L, YAN J, et al. Chemical composition characteristics and source analysis of PM2.5 in Jiaxing, China: Insights into the effect of COVID-19 outbreak [J]. Environmental Technology, 2021: 1-29.
|
[13] |
DATTA A, RAHMAN M H, SURESH R. Did the COVID-19 lockdown in Delhi and Kolkata improve the ambient air quality of the two cities? [J]. Journal of Environmental Quality, 2021, 50(2): 485-493. doi: 10.1002/jeq2.20192
|
[14] |
QIAN Y, SCHERE L, TUKKER A, et al. China's potential SO2 emissions from coal by 2050 [J]. Energy Policy, 2020, 147: 111856. doi: 10.1016/j.enpol.2020.111856
|
[15] |
叶堃, 李闯, 徐银鸿, 等. 陕西典型地区民用燃煤炉具取暖污染减排效果及影响因素研究 [J]. 煤炭加工与综合利用, 2020(10): 80-85, 5.
YE K, LI C, XU Y H. et al. The study on effects and influencing factors of pollution reduction of household coal-fired stove heating in typical areas of Shaanxi Province [J]. Coal Processing & Comprehensive Utilization, 2020(10): 80-85, 5(in Chinese).
|
[16] |
孟祥瑞, 张凯山. 成都市道路移动源减排对空气质量的短期影响 [J]. 环境科学学报, 2021, 41(4): 1250-1258.
MENG X R, ZHANG K S. The short-term effect of on-road vehicle emissions reduction on air quality in Chengdu [J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1250-1258(in Chinese).
|
[17] |
姬杨蓓蓓, 莫世杰, 成枫. 公共交通管控对新冠肺炎病毒(COVID-19)疫情爆发期的影响分析 [J]. 重庆交通大学学报(自然科学版), 2020, 39(8): 20-28.
JI Y, MO S J, CHENG F. Influence analysis of public transport controls against novel coronavirus pneumonia(COVID-19) during outbreak period [J]. Journal of Chongqing Jiaotong University (Natural Science Science), 2020, 39(8): 20-28(in Chinese).
|
[18] |
赵雪, 沈楠驰, 李令军, 等. COVID-19疫情期间京津冀大气污染物变化及影响因素分析 [J]. 环境科学, 2021, 42(3): 1205-1214.
ZHAO X, SHEN N C, LI L J, et al. Analysis of changes and factors influencing air pollutants in the Beijing-Tianjin-Hebei region during the COVID-19 pandemic [J]. Environmental Science, 2021, 42(3): 1205-1214(in Chinese).
|
[19] |
LU Q, ZHENG J Y, YE S Q, et al. Emission trends and source characteristics of SO2, NOx, PM10 and VOCs in the Pearl River Delta region from 2000 to 2009 [J]. Atmospheric Environment, 2013, 76: 11-20. doi: 10.1016/j.atmosenv.2012.10.062
|
[20] |
LE T H, WANG Y, LIU L, et al. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China [J]. Science, 2020, 369(6504): 702-706. doi: 10.1126/science.abb7431
|
[21] |
HUANG F F, LI X, WANG C, et al . PM2.5 spatiotemporal variations and the relationship with meteorological factors during 2013-2014 in Beijing, China [J]. PLoS One, 2015, 10(11): e0141642. doi: 10.1371/journal.pone.0141642
|
[22] |
CHEN K, WANG M, HUANG C H, et al. Air pollution reduction and mortality benefit during the COVID-19 outbreak in China [J]. The Lancet. Planetary Health, 2020, 4(6): e210-e212. doi: 10.1016/S2542-5196(20)30107-8
|
[23] |
余锋, 李小飞, 李锦雯, 等. 新冠疫情对关中盆地空气质量的影响 [J]. 陕西科技大学学报, 2021, 39(4): 28-39. doi: 10.3969/j.issn.1000-5811.2021.04.005
YU F, LI X F, LI J W, et al. Effects of Corona Virus Disease 2019 on air quality in Guanzhong Basin [J]. Journal of Shaanxi University of Science & Technology, 2021, 39(4): 28-39(in Chinese). doi: 10.3969/j.issn.1000-5811.2021.04.005
|
[24] |
WANG H L, HUANG C, TAO W, et al. Seasonality and reduced nitric oxide titration dominated ozone increase during COVID-19 lockdown in eastern China [J]. npj Climate and Atmospheric Science, 2022, 5(1): 1-7. doi: 10.1038/s41612-021-00225-3
|
[25] |
刘跃斌, 张远, 张逸冰, 等. 邯郸市新冠疫情前后空气质量指数(AQI)对比与疫情防控期间大气污染特征分析 [J]. 环境化学, 2021, 40(12): 3743-3754. doi: 10.7524/j.issn.0254-6108.2021022402
LIU Y B, ZHANG Y, ZHANG Y B, et al. Comparison of air quality index(AQI) before and after COVID-19 in Handan City and analysis of air pollution characteristics during COVID-19 prevention and control [J]. Environmental Chemistry, 2021, 40(12): 3743-3754(in Chinese). doi: 10.7524/j.issn.0254-6108.2021022402
|
[26] |
杨雪, 安馨悦, 刘玉启, 等. 山东临沂大气夏季典型时段臭氧污染特征及其控制因素分析 [J]. 环境科学, 2022, 43(2): 696-706.
YANG X, AN X Y, LIU Y Q, et al. Pollution characteristic and control factor analysis of atmospheric ozone during summer typical periods in Linyi, Shandong [J]. Environmental Science, 2022, 43(2): 696-706(in Chinese).
|
[27] |
王占山, 李云婷, 张大伟, 等. 2014年APEC会议期间北京市空气质量分析 [J]. 环境科学学报, 2016, 36(2): 675-683.
WANG Z S, LI Y T, ZHANG D W, et al. Analysis on air quality in Beijing during the 2014 APEC conference [J]. Acta Scientiae Circumstantiae, 2016, 36(2): 675-683(in Chinese).
|
[28] |
鲍宗炜, 张宏, 周志刚, 等. 兰溪市PM2.5中水溶性离子的组成特征及季节变化 [J]. 环境科学学报, 2021, 41(5): 1727-1733.
BAO Z W, ZHANG H, ZHOU Z G, et al. Compositional characteristics and seasonal variations of the water-soluble ions in PM2.5 in Lanxi [J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1727-1733(in Chinese).
|
[29] |
黄含含, 王羽琴, 李升苹, 等. 西安市PM2.5中水溶性离子的季节变化特征 [J]. 环境科学, 2020, 41(6): 2528-2535.
HUANG H H, WANG Y Q, LI S P, et al. Seasonal variation of water-soluble ions in PM2.5 in Xi'an [J]. Environmental Science, 2020, 41(6): 2528-2535(in Chinese).
|
[30] |
GAO X M, YANG L X, CHENG S H, et al. Semi-continuous measurement of water-soluble ions in PM2.5 in Jinan, China: temporal variations and source apportionments [J]. Atmospheric Environment, 2011, 45(33): 6048-6056. doi: 10.1016/j.atmosenv.2011.07.041
|
[31] |
HUANG X F, YU J Z, YUAN Z B, et al. Source analysis of high particulate matter days in Hong Kong [J]. Atmospheric Environment, 2009, 43(6): 1196-1203. doi: 10.1016/j.atmosenv.2008.10.013
|
[32] |
邹强, 姚玉刚. 春节烟花爆竹燃放期间苏州市区PM2.5组分特征分析 [J]. 中国环境监测, 2014, 30(4): 100-106.
ZOU Q, YAO Y G. The analysis of characteristics of PM2.5 components during set-off fireworks period of spring festival in Suzhou City [J]. Environmental Monitoring in China, 2014, 30(4): 100-106(in Chinese).
|
[33] |
申进朝, 陈纯, 多克辛. 部分中原城市PM2.5中水溶性离子污染特征 [J]. 环境科学与技术, 2014, 37(7): 153-156.
SHEN J C, CHEN C, DUO K X. Pollution characteristics of water soluble ions in PM2.5 in some cities of central China [J]. Environmental Science & Technology, 2014, 37(7): 153-156(in Chinese).
|