-
近年来,人类内分泌相关疾病的发病率不断增加引发了人们对环境内分泌干扰物(environmental endocrine disruptors,EDCs)的关注,如人体内分泌紊乱[1]、儿童肥胖[2]等。EDCs的影响可以通过该物质对雌激素受体 (estrogen receptor, ER)的激动作用来评估[3]。
对人类雌激素受体有激动作用的雌激素可以分为三类:天然雌激素(雌酮、雌二醇、雌三醇等);合成雌激素(双酚A);以及植物雌激素(金雀异黄酮、β-谷甾醇、豆甾醇等)[4]。目前大量研究已从人体血液、尿液中检测出了天然雌激素[5-7]、合成雌激素[8-9]以及植物雌激素[10-12]。还有研究检测了人从水体环境接触雌激素的风险[13]以及从中草药[14]、豆浆[15]等通过食用摄入雌激素的风险。
雌激素对ER的激动作用可以通过相对结合亲和力 (relative binding affinity, RBA)的数据进行评估,有研究通过实验确定了部分雌激素的雌激素受体相对结合亲和力 [16]。对于部分没有实验数据的物质,一些研究通过分子对接[17]或者使用QSAR建模[18]预测了雌激素受体相对结合亲和力。
本研究对雌激素进行了3D-QSAR计算,得到具有较好预测能力的CoMFA(q2=0.721,r2=0.925)和CoMSIA(q2=0.824,r2=0.961)模型。并通过使用CoMFA和CoMSIA模型预测了部分雌激素的RBA。对我国各地区的鸡饲料和鸡肉样品中的天然雌激素(雌酮、雌二醇、雌三醇等)、合成雌激素(双酚A)、植物雌激素(金雀异黄酮、β-谷甾醇、豆甾醇等)的水平进行了检测,在饲料以及肉样品中均有不同程度检出雌激素。最后利用QSAR模型预测的RBA对全国范围的鸡肉样品进行了雌激素风险评估。
雌激素的3D-QSAR模型构建及其在饲料与鸡肉中含量的测定以及对人体的影响
3D-QSAR predicts the endocrine disrupting effect of estrogen and measures and evaluates the effect of estrogen in chicken feed and chicken on the human body
-
摘要: 雌激素对人体有显著的内分泌干扰效应。本文以雌激素受体相对亲和力(relative binding affinity, RBA)作为生物活性,对雌激素进行了三维定量构效关系(3D-QSAR)计算,得到具有较好预测能力的CoMFA(交叉验证相关系数q2=0.721,非交叉验证相关系数r2=0.925)和CoMSIA(q2=0.824,r2=0.961)模型。并对国内各地区鸡肉进行了雌激素含量检测与雌激素效应评估。植物雌激素在鸡饲料和鸡肉中检出率为69%和84%;天然雌激素在鸡饲料和鸡肉中检出率为53%和50%。检测及评估结果显示绝大部分鸡肉可以安全食用,但鸡肉中含有的己烯雌酚、17α-乙炔雌二醇以及香芹酚所具有的雌激素效应值得引起重视。Abstract: Estrogen has a significant endocrine disrupting effect on the human body. In this paper, the relative binding affinity (RBA) was used as the biological activity, and the three-dimensional quantitative structure-activity relationship (3D-QSAR) calculation of estrogen was carried out. CoMFA (q2=0.721, r2=0.925) and CoMSIA (q2=0.824, r2=0.961) models with good predictive ability are obtained. The detection rates of phytoestrogens in chicken feed and chicken were 69% and 84%; the detection rates of natural estrogens in chicken feed and chicken were 53% and 50%. The results show that most chickens are safe to eat, but the estrogenic effects of diethylstilbestrol, 17α-ethinyl estradiol and carvacrol in chicken are worthy of attention.
-
Key words:
- Estrogen /
- phytoestrogens /
- 3D-QSAR /
- hormonal effects /
- evaluation
-
表 1 CoMFA和CoMSIA模型的统计参数
Table 1. Statistical parameters of CoMFA and CoMSIA models
模型
ModelsPLS statictics ONCa q2 b Es c r2 d F e P f rp2 g CoMFA 6 0.721 0.450 0.925 64.977 0.000 0.991 CoMSIA 6 0.824 0.323 0.961 113.157 0.000 0.989 Contributions S h E i H j D k A l CoMFA 0.566 0.434 — - — CoMSIA 0.180 0.191 0.164 0.294 0.171 a 最佳主成分数. b 留一法 (LOO) 交叉验证相关系数. c 估计标准误差. d 非交叉验证相关系数. e F检验值. f r2的概率. g 测试集的预测相关系数. h 空间场. i 静电场. j H疏水场. k 氢键供体场. l 氢键受体场.
a Optimum number of components. b Leave-one-out (LOO) cross-validated correlation coefficient. c Standard error of estimate. d Noncross-validated correlation coefficient. e F-test value. f Probability of r2. g Predicted correlation coefficient for the test set. h Steric field. i Electrostatic field. j Hydrophobic field. k H-bond donor field. l H-bond acceptor field.表 2 13种雌激素的RBA实验值与预测值
Table 2. RBA experimental and predicted values of 13 estrogen
物质名称
CompoundsRBA 实验值
Experimental valueCoMFA CoMSIA 己烯雌酚 398.107 3.969 4.305 雌酮 7.244 2.034 2.433 17β-雌二醇 100 2.511 2.789 17α-乙炔雌二醇 100 1.98 2.435 雌三醇 9.772 1.878 2.663 双酚A 0.008 1.861 1.871 麝香草酚 — 9.747 3.645 香芹酚 — 4.022 4.133 香豆素 — 8.886 4.569 柚皮素 0.007 9.283 1.179 大豆苷 — 8.886 4.569 金雀异黄酮 0.437 0.368 0.374 豆甾醇 — 0.862 1.057 β-谷甾醇 — 0.484 -0.087 表 3 各地区鸡肉中雌激素每日暴露量(μg·kg−1·d−1)
Table 3. Daily exposure to estrogen in chicken meat in various regions
物质名称
Compounds东北 华北 华中 华东 西南 东南 己烯雌酚 0.013382 N.D. N.D. N.D. N.D. N.D. 雌酮 0.17143 N.D. N.D. N.D. N.D. 0.021743 17β-雌二醇 N.D. N.D. N.D. N.D. N.D. N.D. 17α-乙炔雌二醇 0.112584 N.D. N.D. N.D. N.D. 0.052181 雌三醇 0.037081 N.D. N.D. N.D. N.D. N.D. 双酚A N.D. N.D. N.D. N.D. N.D. N.D. 麝香草酚 0.056508 0.033633 0.048733 0.045679 0.052643 0.058782 香芹酚 0.031307 0.633206 0.372618 0.028756 2.245922 0.417594 香豆素 0.175107 0.17087 0.162316 0.167872 0.167255 0.167619 柚皮素 0.04352 0.046175 0.042312 0.042596 0.049038 0.04333 大豆苷 0.002276 N.D. N.D. 0.01428 N.D. 0.006006 金雀异黄酮 0.004643 N.D. 0.004314 0.005906 N.D. 0.004468 豆甾醇 0.340804 N.D. 0.000487 0.138105 0.416443 0.43459 β-谷甾醇 1.193188 N.D. 0.201398 0.355421 1.434338 N.D. N.D.,未检出 N.D., not detected. 表 4 各地区鸡肉中雌激素风险指数(RI)
Table 4. Estrogen risk index (RI) in chicken meat by region
物质名称
Compounds东北 华北 华中 华东 西南 东南 己烯雌酚 1.065483 N.D. N.D. N.D. N.D. N.D. 雌酮 0.248368 N.D. N.D. N.D. N.D. 0.031501 17β-雌二醇 N.D. N.D. N.D. N.D. N.D. N.D. 17α-乙炔雌二醇 0.011258 N.D. N.D. N.D. N.D. 0.005218 雌三醇 0.072472 N.D. N.D. N.D. N.D. N.D. 双酚A N.D. N.D. N.D. N.D. N.D. N.D. 麝香草酚 0.041194 0.024518 0.035526 0.0333 0.038377 0.042852 香芹酚 0.025879 0.523408 0.308006 0.02377 1.856479 0.345183 香豆素 0.160013 0.156141 0.148325 0.153401 0.152838 0.15317 柚皮素 6.09×10−5 6.46×10−5 5.92×10−5 5.96×10−5 6.87×10−5 6.07×10−5 大豆苷 0.00208 N.D. N.D. 0.013049 N.D. 0.005488 金雀异黄酮 0.000406 N.D. 0.000377 0.000516 N.D. 0.00039 豆甾醇 0.072046 N.D. 0.000103 0.029195 0.088036 0.091872 β-谷甾醇 0.115501 N.D. 0.019495 0.034405 0.138844 N.D. N.D.,未检出 N.D., not detected. -
[1] BOBERG J, MANDRUP K R, JACOBSEN P R, et al. Endocrine disrupting effects in rats perinatally exposed to a dietary relevant mixture of phytoestrogens [J]. Reproductive Toxicology, 2013, 40: 41-51. doi: 10.1016/j.reprotox.2013.05.014 [2] HERAS-GONZÁLEZ L, LATORRE J A, MARTINEZ-BEBIA M, et al. The relationship of obesity with lifestyle and dietary exposure to endocrine-disrupting chemicals [J]. Food and Chemical Toxicology, 2020, 136: 110983. doi: 10.1016/j.fct.2019.110983 [3] EMARA Y, FANTKE P, JUDSON R, et al. Integrating endocrine-related health effects into comparative human toxicity characterization [J]. Science of the Total Environment, 2021, 762: 143874. doi: 10.1016/j.scitotenv.2020.143874 [4] FLECK S C, CHURCHWELL M I, DOERGE D R, et al. Urine and serum biomonitoring of exposure to environmental estrogens II: Soy isoflavones and Zearalenone in pregnant women [J]. Food and Chemical Toxicology, 2016, 95: 19-27. doi: 10.1016/j.fct.2016.05.021 [5] ROBLES J, MARCOS J, RENAU N, et al. Quantifying endogenous androgens, estrogens, pregnenolone and progesterone metabolites in human urine by gas chromatography tandem mass spectrometry [J]. Talanta, 2017, 169: 20-29. doi: 10.1016/j.talanta.2017.03.032 [6] HUANG J, SUN J H, CHEN Y H, et al. Analysis of multiplex endogenous estrogen metabolites in human urine using ultra-fast liquid chromatography-tandem mass spectrometry: A case study for breast cancer [J]. Analytica Chimica Acta, 2012, 711: 60-68. doi: 10.1016/j.aca.2011.10.058 [7] ADLERCREUTZ H, KIURU P, RASKU S, et al. An isotope dilution gas chromatographic-mass spectrometric method for the simultaneous assay of estrogens and phytoestrogens in urine [J]. The Journal of Steroid Biochemistry and Molecular Biology, 2004, 92(5): 399-411. doi: 10.1016/j.jsbmb.2004.10.015 [8] FOSTER W G, KUBWABO C, KOSARAC I, et al. Free bisphenol A (BPA), BPA-Glucuronide (BPA-G), and total BPA concentrations in maternal serum and urine during pregnancy and umbilical cord blood at delivery [J]. Emerging Contaminants, 2019, 5: 279-287. doi: 10.1016/j.emcon.2019.08.002 [9] LACROIX M Z, PUEL S, COLLET S H, et al. Simultaneous quantification of bisphenol A and its glucuronide metabolite (BPA-G) in plasma and urine: Applicability to toxicokinetic investigations [J]. Talanta, 2011, 85(4): 2053-2059. doi: 10.1016/j.talanta.2011.07.040 [10] MUSTAFA A M, MALINTAN N T, SEELAN S, et al. Phytoestrogens levels determination in the cord blood from Malaysia rural and urban populations [J]. Toxicology and Applied Pharmacology, 2007, 222(1): 25-32. doi: 10.1016/j.taap.2007.03.014 [11] PRASAIN J K, ARABSHAHI A, MOORE D R II, et al. Simultaneous determination of 11 phytoestrogens in human serum using a 2 Min liquid chromatography/tandem mass spectrometry method [J]. Journal of Chromatography B, 2010, 878(13/14): 994-1002. [12] WYNS C, BOLCA S, DE KEUKELEIRE D, et al. Development of a high-throughput LC/APCI-MS method for the determination of thirteen phytoestrogens including gut microbial metabolites in human urine and serum [J]. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 2010, 878(13/14): 949-956. [13] 王亮, 毛茜慧, 袁守军, 等. 气相色谱-质谱联用法同时测定污水中对羟基苯甲酸酯和甾体雌激素 [J]. 环境化学, 2016, 35(1): 49-56. doi: 10.7524/j.issn.0254-6108.2016.01.2015081901 WANG L, MAO Q H, YUAN S J, et al. Simultaneous determination of parabens and steroid estrogens in sewage water using gas chromatography-mass spectrometry [J]. Environmental Chemistry, 2016, 35(1): 49-56(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.01.2015081901
[14] LEE S H, JUNG B H, KIM S Y, et al. Determination of phytoestrogens in traditional medicinal herbs using gas chromatography-mass spectrometry [J]. The Journal of Nutritional Biochemistry, 2004, 15(8): 452-460. doi: 10.1016/j.jnutbio.2004.01.007 [15] BENEDETTI B, di CARRO M, MIRASOLE C, et al. Fast derivatization procedure for the analysis of phytoestrogens in soy milk by gas chromatography tandem mass spectrometry [J]. Microchemical Journal, 2018, 137: 62-70. doi: 10.1016/j.microc.2017.09.023 [16] GRAY S L, LACKEY B R. Optimizing a recombinant estrogen receptor binding assay for analysis of herbal extracts [J]. Journal of Herbal Medicine, 2019, 15: 100252. doi: 10.1016/j.hermed.2018.12.002 [17] COTTERILL J V, PALAZZOLO L, RIDGWAY C, et al. Predicting estrogen receptor binding of chemicals using a suite of in silico methods - Complementary approaches of (Q)SAR, molecular docking and molecular dynamics [J]. Toxicology and Applied Pharmacology, 2019, 378: 114630. doi: 10.1016/j.taap.2019.114630 [18] 蒙延娟, 易忠胜, 艾芳婷, 等. 基于对接的植物激素3D-QSAR和分子动力学模拟 [J]. 环境化学, 2014, 33(6): 880-890. doi: 10.7524/j.issn.0254-6108.2014.06.016 MENG Y J, YI Z S, AI F T, et al. 3D QSAR study of phytoestrogens: A combined molecular dockingand molecular dynamics simulation [J]. Environmental Chemistry, 2014, 33(6): 880-890(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.06.016
[19] 胡海山, 赵淑娥, 芦慧, 等. QuEChERS-超高效液相色谱法快速测定果蔬中4种植物激素残留 [J]. 食品安全质量检测学报, 2019, 10(10): 2995-2999. doi: 10.3969/j.issn.2095-0381.2019.10.026 HU H S, ZHAO S E, LU H, et al. Rapid determination of 4 kinds of phytohormone residues in fruits and vegetables by QuEChERS-ultra performance liquid chromatography [J]. Journal of Food Safety & Quality, 2019, 10(10): 2995-2999(in Chinese). doi: 10.3969/j.issn.2095-0381.2019.10.026
[20] CompTox, U. S. Environmental Protection Agency [DB]. [2021-10-5] [21] 赵娜娜, 应力, 孙方云, 等. 温州市食品环境雌激素污染状况及风险评估 [J]. 温州医科大学学报, 2014, 44(3): 173-176. doi: 10.3969/j.issn.2095-9400.2014.03.005 ZHAO N N, YING L, SUN F Y, et al. Contamination levels of environmental estrogens in foods and risk assessment in Wenzhou [J]. Journal of Wenzhou Medical University, 2014, 44(3): 173-176(in Chinese). doi: 10.3969/j.issn.2095-9400.2014.03.005
[22] TANG Z, WAN Y P, LIU Z H, et al. Twelve natural estrogens in urines of swine and cattle: Concentration profiles and importance of eight less-studied [J]. Science of the Total Environment, 2022, 803: 150042. doi: 10.1016/j.scitotenv.2021.150042