-
世界范围内能源需求的增加以及优质化石能源的日渐枯竭迫使人们将目光投向储量丰富的高含硫酸性原料的开发利用。中东地区拥有世界已探明石油储量的64%,而这些原油大多为含硫量高的“酸性油”(硫含量超过2 % 质量分数)[1]。目前已探明的天然气世界储量中H2S含量1%—15%,CO2含量0—15%的酸性天然气占30%以上,H2S及CO2含量高于15%的酸性气体占4%以上[2]。我国含硫气田(含硫2%—4%)气产量更是占全国气产量的60%以上,普光、元坝气田为典型的高含硫气田,H2S含量最高可达17%[3]。这些酸性原料在加工利用过程中会产生大量酸性气体(H2S和CO2),对环境及人体健康危害极大。目前工业上主要采用溶剂法分离出H2S和CO2,再利用克劳斯硫回收法处理H2S,将H2S转化为低值的硫磺和水,典型处理流程图如图1所示。酸性气体中伴生杂质(CO2、烃类)的存在常导致克劳斯硫回收过程的技术问题[4]。此外,上述酸性气体的治理过程忽略了CO2的治理,导致CO2的大量排放。当前,全球气候变化的威胁不断升级,极端气候灾害更趋严峻。为应对气候危机,我国力争于2030年前实现CO2排放达到峰值,2060年前实现碳中和,将用全球历史上最短的时间实现碳达峰到碳中和,任务艰巨而紧迫。碳中和目标下,如何同时实现硫化氢污染控制与二氧化碳减排是化工行业酸性气体治理过程中面临的一项非常紧迫和充满挑战的任务。
因此,有必要开发更具经济与环境效益的酸性气体治理与资源利用的替代手段,尤其是针对不同行业、工况下酸性气体的特点开发多资源协同回收利用技术,实现污染减排及资源利用的最大化。目前,针对含H2S酸性气体的多组分转化与资源综合利用,研究者们开展了酸性气体(H2S、CO2、CH4等混合气)直接转化为高价值产品——氢气以及高附加值的硫衍生物等的相关研究,主要包括以下几个方面。
化工行业酸性气体多组分转化与资源回收研究进展
Advances in multicomponent conversion and resources recovery from acid gas in chemical industry
-
摘要:
碳中和背景下石油化工、天然气化工、煤化工等化工行业酸性气体的治理面临硫化氢污染控制与二氧化碳减排的双重挑战。寻求经济有效、资源化、可持续的酸性气体治理与多资源协同回收技术迫在眉睫。结合当前研究前沿及酸性气体污染控制与资源回收的需求,本文综述了利用酸性气体(H2S、CO2、CH4等混合气体)多组分直接转化为高价值产品——氢气以及高附加值硫衍生物的研究进展,并对酸性气体多组分转化与资源综合利用,进而深加工向高附加值有机硫化工产品方向发展的前景进行了展望。
Abstract:Under the background of carbon neutrality, the treatment of acid gas in petrochemical, natural gas processing and coal chemical industries is faced with the dual challenges of hydrogen sulfide pollution control and carbon dioxide emission reduction. It is extremely urgent to seek an economical-effective and sustainable acid gas treatment as well as multi-resource recovery technology. Combined with the present research frontier and the demands for efficient treatment of acid gas and resource utilization, this paper reviews the advances in direct conversion of acid gas (mixed gas of H2S, CO2 and CH4) into high value products—hydrogen and high value-added sulfur derivatives. The outlook of acid gas multi-component conversion and comprehensive utilization, and further processing to produce organic sulfur chemical products with high value is prospected.
-
Key words:
- acid gas /
- reformation /
- hydrogen production /
- carbon dioxide emission reduction /
- methanethiol
-
表 1 合成气法制CH3SH的催化剂性能比较
Table 1. Comparison of the catalyst performance for the CH3SH synthesis from syngas
催化剂
CatalystCO/H2/H2S
Molar ratio温度/℃
Temperature压力/MPa
PressureCO转化率/%
CO conversionCH3SH选择性/%
CH3SH selectivity参考文献
ReferenceK2MoO4/SiO2 2/7/1 295 0.2 46 99.1 [54] K2MoS4/La2O3/SiO2 5/14/1 290 0.2 12.2 98.6 [50] α-Al2O3 4/5/1 340 2.0 6.1 98.2 [55] K2WO4/Al 1/2/1 320 1.0 24 45 [52] 10%V2O5/Al2O3 1/0/1 342 0.1 61 28 [56] K2-Mo/SBA-15 1/2/1 300 0.2 62.18 46.79 [57] K2MoTe0.5O/SiO2 1/1/2 300 0.2 62.1 49.1 [58] Re2O7/Al2O3 1/4/4 295 3.0 92 47.2 [59] 表 2 COS/CS2为原料合成甲硫醇的催化剂性能
Table 2. Catalyst performance for the CH3SH synthesis derived from COS or CS2
催化剂
Catalyst反应条件
Reaction Conditions转化率/%
ConversionCH3SH收率/%
CH3SH Yield参考文献
ReferenceK2MoS4/SiO2 H2/COS=3, H2/H2S=5.3
T=325 ℃, P=3 MPa56.8 2.13 [63] MoK2/Al2O3 H2/COS=2.3, H2/H2S=7
T=350 ℃, P=30 MPa90 17 [64] K/Co-Mo/SiO2 COS/H2S/H2=1/0.52/2.4,
T=355 ℃, P=3 MPa,
CS2/H2S/H2=1/2.1/5.9,
T=275 ℃, P=3 MPaCOS(98)
CS2(100)35
98[45] NiMoS2/SiO2 CS2/H2S/H2=2/1/7,
T=290 ℃, P=2 MPa100 80 [65] -
[1] DEMIRBAS A, ALIDRISI H, BALUBAID M A. API gravity, sulfur content, and desulfurization of crude oil [J]. Petroleum Science and Technology, 2015, 33(1): 93-101. doi: 10.1080/10916466.2014.950383 [2] TAIFAN W, BALTRUSAITIS J. Minireview: direct catalytic conversion of sour natural gas (CH4 + H2S + CO2) components to high value chemicals and fuels [J]. Catalysis Science & Technology, 2017, 7(14): 2919-2929. [3] 岑芳, 李治平, 赖枫鹏, 等. 中国含硫天然气资源特点及前景 [J]. 新疆石油天然气, 2006, 2(4): 1-3, 11, 99. doi: 10.3969/j.issn.1673-2677.2006.04.001 CEN F, LI Z P, LAI F P, et al. The features and prospect of sulfurous gas in China [J]. Xinjiang Oil & Gas, 2006, 2(4): 1-3, 11, 99(in Chinese). doi: 10.3969/j.issn.1673-2677.2006.04.001
[4] GUPTA A K, IBRAHIM S, AL SHOAIBI A. Advances in sulfur chemistry for treatment of acid gases [J]. Progress in Energy and Combustion Science, 2016, 54: 65-92. doi: 10.1016/j.pecs.2015.11.001 [5] MA W G, WANG H, YU W, et al. Achieving simultaneous CO2 and H2 S conversion via a coupled solar-driven electrochemical approach on non-precious-metal catalysts [J]. Angewandte Chemie (International Ed. in English), 2018, 57(13): 3473-3477. doi: 10.1002/anie.201713029 [6] van STRAELEN J, GEUZEBROEK F, GOODCHILD N, et al. CO2 capture for refineries, a practical approach [J]. International Journal of Greenhouse Gas Control, 2010, 4(2): 316-320. doi: 10.1016/j.ijggc.2009.09.022 [7] GROISIL M, IBRAHIM S, ALSHOAIBI A S, et al. Acid gas simulation for recovering syngas and sulfur[C]//Proceedings of ASME 2015 Power Conference Collocated With the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum, June 28-July 2, 2015, San Diego, California, USA. 2015. [8] GROISIL M, IBRAHIM S, GUPTA A K, et al. Numerical examination of acid gas for syngas and sulfur recovery [J]. Energy Procedia, 2015, 75: 3066-3070. doi: 10.1016/j.egypro.2015.07.628 [9] EL-MELIH A M, IBRAHIM S, GUPTA A K, et al. Experimental examination of syngas recovery from acid gases [J]. Applied Energy, 2016, 164: 64-68. doi: 10.1016/j.apenergy.2015.11.025 [10] IBRAHIM S, RAJ A. Kinetic simulation of acid gas (H2S and CO2) destruction for simultaneous syngas and sulfur recovery [J]. Industrial & Engineering Chemistry Research, 2016, 55(24): 6743-6752. [11] SU H, LI Y Y, LI P, et al. Simultaneous recovery of carbon and sulfur resources from reduction of CO2 with H2S using catalysts [J]. Journal of Energy Chemistry, 2016, 25(1): 110-116. doi: 10.1016/j.jechem.2015.08.009 [12] ZHAO L, LIU X Z, MU X L, et al. Highly selective conversion of H2S-CO2 to syngas by combination of non-thermal plasma and MoS2/Al2O3 [J]. Journal of CO2 Utilization, 2020, 37: 45-54. doi: 10.1016/j.jcou.2019.11.021 [13] MANENTI F. CO2 as feedstock: A new pathway to syngas[M]//12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering. Amsterdam: Elsevier, 2015: 1049-1054. [14] BASSANI A, PIROLA C, MAGGIO E, et al. Acid gas to syngas (AG2STM) technology applied to solid fuel gasification: Cutting H2S and CO2 emissions by improving syngas production [J]. Applied Energy, 2016, 184: 1284-1291. doi: 10.1016/j.apenergy.2016.06.040 [15] MANENTI F, MANENTI G, MOLINARI L. Syngas from H2S and CO2: An alternative, pioneering synthesis route?[EB/OL]. 2016. [16] BASSANI A, PIROLA C, BOZZANO G, et al. Technical feasibility of AG2STM process revamping[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2017: 385-390. [17] BASSANI A, SPEELMANNS E M, RANZI E, et al. Enabling sulfur-rich coal sources for gasification without emissions[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2016: 1195-1200. [18] BASSANI A, BOZZANO G, PIROLA C, et al. Sulfur rich coal gasification and low impact methanol production [J]. Journal of Sustainable Development of Energy, Water and Environment Systems, 2017, 6(1): 210-226. doi: 10.13044/j.sdewes.d5.0188 [19] BASSANI A, PREVITALI D, PIROLA C, et al. Mitigating carbon dioxide impact of industrial steam methane reformers by acid gas to syngas technology: Technical and environmental feasibility [J]. Journal of Sustainable Development of Energy, Water and Environment Systems, 2020, 8(1): 71-87. doi: 10.13044/j.sdewes.d7.0258 [20] EREKSON E J, MIAO F Q. Gasoline from natural gas by sulfur processing. Quarterly progress report, January 1994——March 1994, final version[R]. Office of Scientific and Technical Information (OSTI), 1994. [21] WANG W M, ZHANG X, XIA Z Q, et al. Catalytic synthesis of methanethiol from carbon disulfide and hydrogen over sulfided KMo/Al2O3 catalysts [J]. Catalysis Letters, 2015, 145(7): 1521-1528. doi: 10.1007/s10562-015-1541-4 [22] JAVADI M, MOGHIMAN M. Hydrogen and carbon black production from thermal decomposition of sub-quality natural gas [J]. International Journal of Spray and Combustion Dynamics, 2010, 2(1): 85-101. doi: 10.1260/1756-8277.2.1.85 [23] TAZIMI M, JAVADI S M, NABAVI S S. The effect of H2S on hydrogen and carbon black production from sour natural gas [J]. Applied Mechanics and Materials, 2011, 110-/116: 2131-2138. doi: 10.4028/www.scientific.net/AMM.110-116.2131 [24] MARTÍNEZ-SALAZAR A L, MELO-BANDA J A, CORONEL-GARCÍA M A, et al. Technoeconomic analysis of hydrogen production via hydrogen sulfide methane reformation [J]. International Journal of Hydrogen Energy, 2019, 44(24): 12296-12302. doi: 10.1016/j.ijhydene.2018.11.023 [25] KARAN K, BEHIE L A. CS2Formation in the Claus reaction furnace: A kinetic study of methane–sulfur and methane–hydrogen sulfide reactions [J]. Industrial & Engineering Chemistry Research, 2004, 43(13): 3304-3313. [26] EL-MELIH A M, AL SHOAIBI A, GUPTA A K. Hydrogen sulfide reformation in the presence of methane [J]. Applied Energy, 2016, 178: 609-615. doi: 10.1016/j.apenergy.2016.06.053 [27] LI Y, YU X L, GUO Q H, et al. Kinetic study of decomposition of H2S and CH4 for H2 production using detailed mechanism [J]. Energy Procedia, 2017, 142: 1065-1070. doi: 10.1016/j.egypro.2017.12.357 [28] EL-MELIH A M, IOVINE L, AL SHOAIBI A, et al. Production of hydrogen from hydrogen sulfide in presence of methane [J]. International Journal of Hydrogen Energy, 2017, 42(8): 4764-4773. doi: 10.1016/j.ijhydene.2016.11.096 [29] HUANG C P, T-RAISSI A. Liquid hydrogen production via hydrogen sulfide methane reformation [J]. Journal of Power Sources, 2008, 175(1): 464-472. doi: 10.1016/j.jpowsour.2007.09.079 [30] LI Y, YU X L, LI H J, et al. Detailed kinetic modeling of homogeneous H2S-CH4 oxidation under ultra-rich condition for H2 production [J]. Applied Energy, 2017, 208: 905-919. doi: 10.1016/j.apenergy.2017.09.059 [31] MEGALOFONOS S K, PAPAYANNAKOS N G. Kinetics of the catalytic reaction of methane and hydrogen sulphide over a PtAl2O3 catalyst [J]. Applied Catalysis A: General, 1996, 138(1): 39-55. doi: 10.1016/0926-860X(95)00227-8 [32] MARTÍNEZ-SALAZAR A L, MELO-BANDA J A, ESQUIVEL J M D, et al. Hydrogen production by methane and hydrogen sulphide reaction: Kinetics and modeling study over Mo/La2O3-ZrO2 catalyst [J]. International Journal of Hydrogen Energy, 2015, 40(48): 17354-17360. doi: 10.1016/j.ijhydene.2015.03.074 [33] MARTÍNEZ-SALAZAR A L, MELO-BANDA J A, REYES de la TORRE A I, et al. Hydrogen production by methane reforming with H2S using Mo, Cr/ZrO2-SBA15 and Mo, Cr/ZrO2-La2O3 catalysts [J]. International Journal of Hydrogen Energy, 2015, 40(48): 17272-17283. doi: 10.1016/j.ijhydene.2015.09.154 [34] 梁皓, 尹泽群, 刘全杰. 甲烷硫化氢重整制氢的方法: CN109721028A[P]. [2019-05-07]. LIANG H, YIN Z Q, LIU Q J. Method for producing hydrogen by reforming methane and hydrogen sulfide: CN109721028A[P]. [2019-05-07](in Chinese).
[35] MEGALOFONOS S K, PAPAYANNAKOS N G. Kinetics of catalytic reaction of methane and hydrogen sulphide over MoS2 [J]. Applied Catalysis A: General, 1997, 165(1/2): 249-258. [36] 梁皓, 尹泽群, 刘全杰, 等. 一种硫化氢甲烷重整制氢的方法: CN109250763A[P]. 2019-01-22. LIANG H, YIN Z Q, LIU Q J, et al. Method for hydrogen production by reforming of hydrogen sulfide and methane: CN109250763A[P]. 2019-01-22(in Chinese).
[37] GALINDO-HERNÁNDEZ F, DOMÍNGUEZ J M, PORTALES B. Structural and textural properties of Fe2O3/γ-Al2O3 catalysts and their importance in the catalytic reforming of CH4 with H2S for hydrogen production [J]. Journal of Power Sources, 2015, 287: 13-24. doi: 10.1016/j.jpowsour.2015.04.015 [38] 田立秋, 张怀有, 孙伟. 利用副产硫化氢发展精细有机硫化工产品的分析 [J]. 煤化工, 2015, 43(5): 20-23. doi: 10.3969/j.issn.1005-9598.2015.05.006 TIAN L Q, ZHANG H Y, SUN W. Analysis on the development of fine organic sulfur chemical products based on the hydrogen sulfide [J]. Coal Chemical Industry, 2015, 43(5): 20-23(in Chinese). doi: 10.3969/j.issn.1005-9598.2015.05.006
[39] 纪罗军. 硫化氢气体制备甲硫醇的现状与前景 [J]. 精细石油化工进展, 2003, 4(3): 11-13. doi: 10.3969/j.issn.1009-8348.2003.03.003 JI L J. The present status and prospects of producing methanet hiol from hydrogen sulfide [J]. Advances in Fine Fetrochemicals, 2003, 4(3): 11-13(in Chinese). doi: 10.3969/j.issn.1009-8348.2003.03.003
[40] PASHIGREVA A V, KONDRATIEVA E, BERMEJO-DEVAL R, et al. Methanol thiolation over Al2O3 and WS2 catalysts modified with cesium [J]. Journal of Catalysis, 2017, 345: 308-318. doi: 10.1016/j.jcat.2016.11.036 [41] WEBER-STOCKBAUER M, GUTIÉRREZ O Y, BERMEJO-DEVAL R, et al. Cesium induced changes in the acid-base properties of metal oxides and the consequences for methanol thiolation [J]. ACS Catalysis, 2019, 9(10): 9245-9252. doi: 10.1021/acscatal.9b02537 [42] 许志志, 陆继长, 刘攀, 等. 高硫合成气法合成甲硫醇研究进展 [J]. 分子催化, 2017, 31(4): 390-400. XU Z Z, LU J C, LIU P, et al. Developments in the synthesis of methanthiol by high H2S-containing syngas [J]. Journal of Molecular Catalysis (China), 2017, 31(4): 390-400(in Chinese).
[43] BARRAULT J, BOULINGUIEZ M, FORQUY C, et al. Synthesis of methyl mercaptan from carbon oxides and H2S with tungsten—alumina catalysts [J]. Applied Catalysis, 1987, 33(2): 309-330. doi: 10.1016/S0166-9834(00)83064-X [44] GORDON H. Preparation of methyl mercaptan from carbon oxides: doi: US4449006A[P].03/13/1986. [45] GUTIÉRREZ O Y, KAUFMANN C, LERCHER J A. Synthesis of methanethiol from carbonyl sulfide and carbon disulfide on (co)K-promoted sulfide Mo/SiO2 catalysts [J]. ACS Catalysis, 2011, 1(11): 1595-1603. doi: 10.1021/cs200455k [46] OLIN J F, DAYTON O, BUCHHOLZ B, et al. Progress for perparation of methyl mercaptan: US3070632A [P]. 1962-12-25. [47] LIU P, LU J C, XU Z Z, et al. The effect of alkali metals on the synthesis of methanethiol from CO/H2/H2S mixtures on the SBA-15 supported Mo-based catalysts [J]. Molecular Catalysis, 2017, 442: 39-48. doi: 10.1016/j.mcat.2017.08.022 [48] YANG Y Q, YUAN Y Z, DAI S J, et al. The catalytic properties of supported K2MoS4/SiO2 catalyst for methanethiol synthesis from high H2S-content syngas [J]. Catalysis Letters, 1998, 54(1/2): 65-68. doi: 10.1023/A:1019071704226 [49] DAI S J, YANG Y Q, YUAN Y Z, et al. On methanethiol synthesis from H2S‐containing syngas over K2MoS4/SiO2 catalysts promoted with transition metal oxides [J]. Catalysis letters, 1999, 61(3): 157-160. [50] YANG Y Q, DAI S J, YUAN Y Z, et al. The promoting effects of La2O3 and CeO2 on K2MoS4/SiO2 catalyst for methanthiol synthesis from syngas blending with H2S [J]. Applied Catalysis A: General, 2000, 192(2): 175-180. doi: 10.1016/S0926-860X(99)00342-7 [51] CORDOVA A, BLANCHARD P, LANCELOT C, et al. Probing the nature of the active phase of molybdenum-supported catalysts for the direct synthesis of methylmercaptan from syngas and H2S [J]. ACS Catalysis, 2015, 5(5): 2966-2981. doi: 10.1021/cs502031f [52] CORDOVA A, BLANCHARD P, SALEMBIER H, et al. Direct synthesis of methyl mercaptan from H2/CO/H2S using tungsten based supported catalysts: Investigation of the active phase [J]. Catalysis Today, 2017, 292: 143-153. doi: 10.1016/j.cattod.2016.10.032 [53] YU M, KOSINOV N, van HAANDEL L, et al. Investigation of the active phase in K-promoted MoS2 catalysts for methanethiol synthesis [J]. ACS Catalysis, 2020, 10(3): 1838-1846. doi: 10.1021/acscatal.9b03178 [54] YANG Y Q, YANG H, WANG Q, et al. Study of the supported K2MoO4 catalyst for methanethiol synthesis by one step from high H2S-containing syngas [J]. Catalysis Letters, 2001, 74(3/4): 221-225. doi: 10.1023/A:1016614004566 [55] ZHANG B J, TAYLOR S H, HUTCHINGS G J. Catalytic synthesis of methanethiol from CO/H2/H2S mixtures using α-Al2O3 [J]. New J Chem, 2004, 28(4): 471-476. doi: 10.1039/B312340P [56] MUL G, WACHS I E, HIRSCHON A S. Catalytic synthesis of methanethiol from hydrogen sulfide and carbon monoxide over vanadium-based catalysts [J]. Catalysis Today, 2003, 78(1/2/3/4): 327-337. [57] HUANG S, HE S F, DENG L, et al. One-step synthesis of methanethiol with mixture gases (CO/H2S/H2) over SBA-15 supported Mo-based catalysts [J]. Procedia Engineering, 2015, 102: 684-691. doi: 10.1016/j.proeng.2015.01.166 [58] CHEN A P, WANG Q, HAO Y J, et al. The promoting effect of tellurium on K2MoO4/SiO2 catalyst for methanethiol synthesis from high H2S-containing syngas [J]. Catalysis Letters, 2007, 118(3/4): 295-299. [59] MARTINE BOULINGUIEZ P, CHRISTIAN FORQUY L, JOEL BARRAULT L. Progress for the production of methyl mercaptan from oxides of carbon: US4665242 [P]. 1987-5-12. [60] 黄缌, 邓莲, 王晶, 等. 负载型钼基催化剂的制备及其合成甲硫醇的性能研究 [J]. 昆明理工大学学报(自然科学版), 2014, 39(6): 19-24. HUANG S, DENG L, WANG J, et al. Preparation of Mo-based catalysts and performance in synthesis of methyl mercaptan [J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2014, 39(6): 19-24(in Chinese).
[61] BUCHHOLZ B. Process for the manufacture of methyl mercaptan from carbon oxides: US4410731[P]. 10/18/1983. [62] CHEN A P, WANG Q, LI Q L, et al. Direct synthesis of methanethiol from H2S-rich syngas over sulfided Mo-based catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2008, 283(1/2): 69-76. [63] GUTIÉRREZ O Y, KAUFMANN C, HRABAR A, et al. Synthesis of methyl mercaptan from carbonyl sulfide over sulfide K2MoO4/SiO2 [J]. Journal of Catalysis, 2011, 280(2): 264-273. doi: 10.1016/j.jcat.2011.03.027 [64] GUTIÉRREZ O Y, KAUFMANN C, LERCHER J A. Influence of potassium on the synthesis of methanethiol from carbonyl sulfide on sulfided Mo/Al2O3 catalyst [J]. ChemCatChem, 2011, 3(9): 1480-1490. doi: 10.1002/cctc.201100124 [65] GUTIÉRREZ O Y, ZHONG L S, ZHU Y Z, et al. Synthesis of methanethiol from CS2on Ni-, co-, and K-doped MoS2/SiO2Catalysts [J]. ChemCatChem, 2013, 5(11): 3249-3259. doi: 10.1002/cctc.201300210