燃烧源与沙尘颗粒物中铁的同位素组成

李锐, 张欢欢, 何雨婷, 安亚军, 张兆峰, 唐明金. 燃烧源与沙尘颗粒物中铁的同位素组成[J]. 环境化学, 2021, (4): 990-998. doi: 10.7524/j.issn.0254-6108.2020081502
引用本文: 李锐, 张欢欢, 何雨婷, 安亚军, 张兆峰, 唐明金. 燃烧源与沙尘颗粒物中铁的同位素组成[J]. 环境化学, 2021, (4): 990-998. doi: 10.7524/j.issn.0254-6108.2020081502
LI Rui, ZHANG Huanhuan, HE Yuting, AN Yajun, ZHANG Zhaofeng, TANG Mingjin. Iron isotopic compositions of combustion source particles and mineral dust[J]. Environmental Chemistry, 2021, (4): 990-998. doi: 10.7524/j.issn.0254-6108.2020081502
Citation: LI Rui, ZHANG Huanhuan, HE Yuting, AN Yajun, ZHANG Zhaofeng, TANG Mingjin. Iron isotopic compositions of combustion source particles and mineral dust[J]. Environmental Chemistry, 2021, (4): 990-998. doi: 10.7524/j.issn.0254-6108.2020081502

燃烧源与沙尘颗粒物中铁的同位素组成

    通讯作者: 唐明金, E-mail: mingjintang@gig.ac.cn
  • 基金项目:

    国家重点研发计划(2018YFC0213901)和广东省科技计划项目(2019B121205006,2020B1212060053)资助.

Iron isotopic compositions of combustion source particles and mineral dust

    Corresponding author: TANG Mingjin, mingjintang@gig.ac.cn
  • Fund Project: Supported by Ministry of Science and Technology of China (2018YFC0213901) and Guangdong Foundation for Program of Science and Technology Research(2019B121205006,2020B1212060053).
  • 摘要: 铁是生命必需的微量营养元素之一,可有效促进海洋的初级生产力.大气沉降被认为是开阔海域生物有效铁最主要的来源,而燃烧源与沙尘颗粒物对其贡献的大小,目前还并不清楚.铁同位素技术的发展为大气及海洋环境中铁元素溯源提供了新的技术路径.由于其在大气及海洋环境领域的应用还十分有限,目前对不同来源颗粒物的铁同位素组成的认知也比较有限.本研究选取1种中国煤飞灰、2种美国煤飞灰、1种欧洲城市废物飞灰及3种不同地区沙尘颗粒物(美国亚利桑那沙尘、中国洛川黄土与中国新疆沙尘)为研究对象,测定了不同燃烧源与沙尘颗粒物中铁元素含量及同位素组成.结果表明,煤飞灰颗粒物中铁元素含量明显高于城市废物飞灰与沙尘颗粒物,最高可达10%左右,而后两者中铁元素含量相当,在2%-4%之间.燃烧源颗粒物的δ56Fe值范围为0.05‰-0.75‰,而沙尘颗粒物的δ56Fe值范围为-0.05‰-0.21‰;燃烧源颗粒物的铁同位素组成相比于沙尘颗粒物偏重,这主要与燃料本身以及飞灰颗粒物性质有关.
  • 加载中
  • [1] MOORE C M, MILLS M M, ARRIGO K R, et al. Processes and patterns of oceanic nutrient limitation[J]. Nature Geoscience, 2013, 6(9):701-710.
    [2] BOYD P W, ELLWOOD M J. The biogeochemical cycle of iron in the ocean[J]. Nature Geoscience, 2010, 3(10):675-682.
    [3] BOYD P W, JICKELLS T, LAW C S, et al. Mesoscale iron enrichment experiments 1993-2005:Synthesis and future directions[J]. Science, 2007, 315(5812):612-617.
    [4] MAHOWALD N M, HAMILTON D S, MACKEY K R M, et al. Aerosol trace metal leaching and impacts on marine microorganisms[J]. Nature Communications, 2018, 9(15):1-18.
    [5] TAGLIABUE A, BOWIE A R, BOYD P W, et al. The integral role of iron in ocean biogeochemistry[J]. Nature, 2017, 543(7643):51-59.
    [6] CONWAY T M, JOHN S G. Quantification of dissolved iron sources to the North Atlantic Ocean[J]. Nature, 2014, 511(7508):212-215.
    [7] CHEN H, GRASSIAN V H. Iron dissolution of dust source materials during simulated acidic processing:The effect of sulfuric, acetic, and oxalic acids[J]. Environmental Science & Technology, 2013, 47(18):10312-10321.
    [8] SCHROTH A W, CRUSIUS J, SHOLKOVITZ E R, et al. Iron solubility driven by speciation in dust sources to the ocean[J]. Nature Geoscience, 2009, 2(5):337-340.
    [9] SOLMON F, CHUANG P Y, MESKHIDZE N, et al. Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacific Ocean[J]. Journal of Geophysical Research:Atmosphere, 2009, 114:D02305, 1-20.
    [10] MAHOWALD N M, BAKER A R, BERGAMETTI G, et al. Atmospheric global dust cycle and iron inputs to the ocean[J]. Global Biogeochemical Cycles, 2005, 19:GB4025, 1-15.
    [11] MESKHIDZE N, CHAMEIDES W L, NENES A. Dust and pollution:A recipe for enhanced ocean fertilization?[J]. Journal of Geophysical Research:Atmospheres, 2005, 110:D03301, 1-23.
    [12] MARTIN J H. Glacial-interglacial CO2 change:The iron hypothesis[J]. Paleoceanography, 1990, 5(1):1-13.
    [13] 高会旺,祁建华,石金辉,等. 亚洲沙尘的远距离输送及对海洋生态系统的影响[J]. 地球科学进展,2009,24(1):1-10.

    GAO H W, QI J H, SHI J H, et al. Lang range transport of Asian dust and its effects on ocean ecosystem[J]. Advances in Earth Science, 2009, 24(1):1-10(in Chinese).

    [14] ITO A, MYRIOKEFALITAKIS S, KANAKIDOU M, et al. Pyrogenic iron:The missing link to high iron solubility in aerosols[J]. Science Advance, 2019, 5(5):1-10.
    [15] MATSUI H, MAHOWALD N M, MOTEKI N, et al. Anthropogenic combustion iron as a complex climate forcer[J]. Nature Communications, 2018, 9(1593):1-10.
    [16] ITO A. Atmospheric processing of combustion aerosols as a source of bioavailable iron[J]. Environmental Science & Technology Letters, 2015, 2(3):70-75.
    [17] 王建强,李小虎,毕冬伟,等. 全球海水剖面Fe同位素组成的不均一性及其影响因素[J]. 地球科学,2017,42(9):1519-1530.

    WANG J Q, LI X H, BI D W, et al. Fe isotopic composition heterogeneity of seawater profiles and its influence factors[J]. Earth Science, 2017, 42(9):1519-1530(in Chinese).

    [18] 刘瑾,宋金明,袁华茂,等. 铁同位素在现代海洋环境的示踪研究[J]. 地质论评,2018,64(5):1225-1236.

    LIU J, SON J M, YUAN H M, et al. The tracing study of iron isotopes in modern marine environment[J]. Geological Review, 2018, 64(5):1225-1236(in Chinese).

    [19] 孙剑,朱祥坤. 表生过程中铁的同位素地球化学[J]. 地质论评,2015,61(6):1370-1382.

    SUN J, ZHU X K. Fe isotope geochemistry of earth surface system[J]. Geological Review, 2015, 61(6):1370-1382(in Chinese).

    [20] CONWAY T M, HAMILTON D S, SHELLEY R U, et al. Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes[J]. Nature Communications, 2019, 10(1):2628, 1-10.
    [21] KURISU M, ADACHI K, SAKATA K, et al. Stable isotope ratios of combustion iron produced by evaporation in a steel plant[J]. ACS Earth Space Chemistry, 2019, 3(4):588-598.
    [22] KURISU M, TAKAHASHI Y, IIZUKA T, et al. Very low isotope ratio of iron in fine aerosols related to its contribution to the surface ocean[J]. Journal of Geophysical Research:Atmosphere, 2016, 121(18):11119-11136.
    [23] ABADIE C, LACAN F, RADIC A, et al. Iron isotopes reveal distinct dissolved iron sources and pathways in the intermediate versus deep Southern Ocean[J]. Proceedings of the National Academy of Sciences, 2017, 114(5):858-863.
    [24] FITZSIMMONS J N, CONWAY T M, LEE J M, et al. Dissolved iron and iron isotopes in the southeastern Pacific Ocean[J]. Global Biogeochemical Cycles, 2016, 30(10):1372-1395.
    [25] 苏鹏,陆达伟,杨学志,等. 非传统稳定同位素在大气颗粒物溯源中的应用[J]. 中国科学:化学,2018,48(10):1163-1170.

    SU P, LU D W, YANG X Z, et al. Application of non-traditional stable isotopes in source tracing of airborne particulate matter[J]. Scientia Sinica Chimica, 2018, 48(10):1163-1170(in Chinese).

    [26] 陈天宇,蔡平河,李伟强,等. 大洋溶解铁的物质来源及其同位素示踪[J]. 海洋地质与第四纪地质,2019,39(5):46-57.

    CHEN T Y, CAI P H, LI W Q, et al. The sources of dissolved iron in the global ocean and isotopic tracing[J]. Marine Geology & Quaternary Geology, 2019, 39(5):46-57(in Chinese).

    [27] 宋柳霆,刘丛强,王中良,等. 铁同位素方法在环境地球化学研究中的应用与进展[J]. 地球与环境,2006,24(1):70-80.

    SONG L T, LIU C Q, WANG Z L, et al. Advances in applications of iron isotopes in environmental geochemistry[J]. Earth and Environment, 2006, 24(1):70-80(in Chinese).

    [28] 何永胜,胡东平,朱传卫. 地球科学中铁同位素研究进展[J]. 地学前缘,2015,22(5):54-71.

    HE Y S, HU D P, ZHU C W. Progress of iron isotope geochemistry in geoscience[J]. Earth Science Frontiers, 2015, 22(5):54-71(in Chinese).

    [29] HE Y, KE S, TENG F Z, et al. High-precision iron isotope analysis of geological reference materials by high-resolution MC-ICP-MS[J]. Geostandards & Geoanalytical Research, 2015, 39(3):341-356.
    [30] SCHOENBERG R, VON BLANCKENBURG F. An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high-resolution multicollector ICP-MS[J]. International Journal of Mass Spectrometry, 2005, 242(2):257-272.
    [31] 梁鹏. 地球科学中铁同位素分析测试方法研究进展[J]. 地下水,2019,44(4):97-100.

    LIANG P. Research progress on test methods of iron isotope analysis in earth science[J]. Ground Water, 2019, 44(4):97-100(in Chinese).

    [32] MILLET M A, BAKER J A, PAYNE C E. Ultra-precise stable Fe isotope measurements by high resolution multiple-collector inductively coupled plasma mass spectrometry with a 57Fe-58Fe double spike[J]. Chemical Geology, 2012, 304-305:18-25.
    [33] MEAD C, HERCKES P, MAJESTIC B J, et al. Source apportionment of aerosol iron in the marine environment using iron isotope analysis[J]. Geophysical Research Letters, 2013, 40(21):5722-5727.
    [34] BEARD B L, JOHNSON C M, SKULAN J L, et al. Application of Fe isotopes to tracing the geochemical and biological cycling of Fe[J]. Chemical Geology, 2003, 195(1):87-117.
    [35] CRADDOCK P R, DAUPHAS N. Iron isotopic compositions of geological reference materials and chondrites[J]. Geostandards & Geoanalytical Research, 2011, 35(1):101-123.
    [36] MAJESTIC B J, ANBAR A D, HERCKES P. Stable isotopes as a tool to apportion atmospheric iron[J]. Environmental Science & Technology, 2009, 43(12):4327-4333.
  • 加载中
计量
  • 文章访问数:  2177
  • HTML全文浏览数:  2177
  • PDF下载数:  118
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-08-15
李锐, 张欢欢, 何雨婷, 安亚军, 张兆峰, 唐明金. 燃烧源与沙尘颗粒物中铁的同位素组成[J]. 环境化学, 2021, (4): 990-998. doi: 10.7524/j.issn.0254-6108.2020081502
引用本文: 李锐, 张欢欢, 何雨婷, 安亚军, 张兆峰, 唐明金. 燃烧源与沙尘颗粒物中铁的同位素组成[J]. 环境化学, 2021, (4): 990-998. doi: 10.7524/j.issn.0254-6108.2020081502
LI Rui, ZHANG Huanhuan, HE Yuting, AN Yajun, ZHANG Zhaofeng, TANG Mingjin. Iron isotopic compositions of combustion source particles and mineral dust[J]. Environmental Chemistry, 2021, (4): 990-998. doi: 10.7524/j.issn.0254-6108.2020081502
Citation: LI Rui, ZHANG Huanhuan, HE Yuting, AN Yajun, ZHANG Zhaofeng, TANG Mingjin. Iron isotopic compositions of combustion source particles and mineral dust[J]. Environmental Chemistry, 2021, (4): 990-998. doi: 10.7524/j.issn.0254-6108.2020081502

燃烧源与沙尘颗粒物中铁的同位素组成

    通讯作者: 唐明金, E-mail: mingjintang@gig.ac.cn
  • 1. 中国科学院广州地球化学研究所有机地球化学国家重点实验室、广东省环境资源利用与保护重点实验室及粤港澳环境污染过程与控制联合实验室, 广州, 510640;
  • 2. 中国科学院广州地球化学研究所同位素地球化学国家重点实验室, 广州, 510640;
  • 3. 中国科学院大学, 北京, 100049
基金项目:

国家重点研发计划(2018YFC0213901)和广东省科技计划项目(2019B121205006,2020B1212060053)资助.

摘要: 铁是生命必需的微量营养元素之一,可有效促进海洋的初级生产力.大气沉降被认为是开阔海域生物有效铁最主要的来源,而燃烧源与沙尘颗粒物对其贡献的大小,目前还并不清楚.铁同位素技术的发展为大气及海洋环境中铁元素溯源提供了新的技术路径.由于其在大气及海洋环境领域的应用还十分有限,目前对不同来源颗粒物的铁同位素组成的认知也比较有限.本研究选取1种中国煤飞灰、2种美国煤飞灰、1种欧洲城市废物飞灰及3种不同地区沙尘颗粒物(美国亚利桑那沙尘、中国洛川黄土与中国新疆沙尘)为研究对象,测定了不同燃烧源与沙尘颗粒物中铁元素含量及同位素组成.结果表明,煤飞灰颗粒物中铁元素含量明显高于城市废物飞灰与沙尘颗粒物,最高可达10%左右,而后两者中铁元素含量相当,在2%-4%之间.燃烧源颗粒物的δ56Fe值范围为0.05‰-0.75‰,而沙尘颗粒物的δ56Fe值范围为-0.05‰-0.21‰;燃烧源颗粒物的铁同位素组成相比于沙尘颗粒物偏重,这主要与燃料本身以及飞灰颗粒物性质有关.

English Abstract

参考文献 (36)

返回顶部

目录

/

返回文章
返回