[1]
|
HOCHELLA M F. Nanoscience and technology the next revolution in the earth sciences[J]. Earth and Planetary Science Letters, 2002, 203(2):593-605.
|
[2]
|
HOCHELLA M F, LOWER S K, MAURICE P A, et al. Nanominerals, mineral nanoparticles, and earth systems[J]. Science, 2008, 319(5870):1631-1635.
|
[3]
|
HOCHELLA M F, MOGK D W, RANVILLE J, et al. Natural, incidental, and engineered nanomaterials and their impacts on the earth system[J]. Science, 2019, 363(6434):1414-1425.
|
[4]
|
AUFFAN M, ROSE J, BOTTERO J Y, et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective[J]. Nature Nanotechnology, 2009, 4(10):634-641.
|
[5]
|
HUANG X, HOU X, SONG F, et al. Facet-dependent Cr(Ⅵ) adsorption of hematite nanocrystals[J]. Environmental Science & Technology, 2016, 50(4):1964-1972.
|
[6]
|
KIRKEMINDE A, REN S. Thermodynamic control of iron pyrite nanocrystal synthesis with high photoactivity and stability[J]. Journal of Materials Chemistry A, 2013, 1(1):49-54.
|
[7]
|
WANG X, XIE Y, BATEER B, et al. Hexagonal FeS nanosheets with high-energy (001) facets:Counter electrode materials superior to platinum for dye-sensitized solar cells[J]. Nano Research, 2016, 9(10):2862-2874.
|
[8]
|
LIU J, ARUGUETE D M, MURAYAMA M, et al. Influence of size and aggregation on the reactivity of an environmentally and industrially relevant manomaterial (PbS)[J]. Environmental Science & Technology, 2009, 43(21):8178-8183.
|
[9]
|
LIU L, SUN M, ZHANG H, et al. Facet energy and reactivity versus cytotoxicity:The surprising behavior of CdS nanorods[J]. Nano Letters, 2016, 16(1):688-694.
|
[10]
|
YANG D, LIU H, ZHENG Z, et al. An efficient photocatalyst structure:TiO2(B) nanofibers with a shell of anatase nanocrystals[J]. Journal of the American Chemical Society, 2009, 131(49):17885-17893.
|
[11]
|
ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251):933-937.
|
[12]
|
GONG Y, LIU Y, XIONG Z, et al. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles:Reaction mechanisms and effects of stabilizer and water chemistry[J]. Environmental Science & Technology, 2014, 48(7):3986-3994.
|
[13]
|
SUN T Y, GOTTSCHALK F, HUNGERBUEHLER K, et al. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials[J]. Environmental Pollution, 2014, 185:69-76.
|
[14]
|
BEHRENS P, BAUERLEIN E. Handbook of biomineralization:Biomimetic and bioinspired chemistry[M]. Hoboken:John Wiley and Sons Ltd, 2009.
|
[15]
|
BERTHIER P. Analyse de l'halloysite[J]. Annales de Chimie Et de Physique, 1826, 32:332-335.
|
[16]
|
YUAN P, TAN D, ANNABI-BERGAYA F. Properties and applications of halloysite nanotubes:Recent research advances and future prospects[J]. Applied Clay Science, 2015, 112:75-93.
|
[17]
|
CARRERO S, FERNANDEZ-MARTINEZ A, PEREZ-LOPEZ R, et al. Basaluminite structure and its environmental implications[J].Procedia Earth and Planetary Science, 2017, 17:237-240
|
[18]
|
BROWN G E, CALAS G. Mineral-aqueous solution interfaces and their impact on the environment[J]. Geochemical Perspectives, 2012, 1(4-5):483-742.
|
[19]
|
TAMRAT W Z, ROSE J, GRAUBY O, et al. Composition and molecular scale structure of nanophases formed by precipitation of biotite weathering products[J]. Geochimica et Cosmochimica Acta, 2018, 229:53-64.
|
[20]
|
ZANKER H, HUTTIG G, ARNOLD T, et al. Formation of iron-containing colloids by the weathering of phyllite[J]. Aquatic geochemistry, 2006, 12(4):299-325.
|
[21]
|
OLIVEIRA M L S, DA BOIT K, PACHECO F, et al. Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of these compounds on human health[J]. Environmental Research, 2018, 160:562-567.
|
[22]
|
WU J, YAO J, CAI Y. Biomineralization of natural nanomaterials[M].Nature's Nanostructures. Singapore:Jenny Stanford Publishing, 2012:225-248.
|
[23]
|
JOSHI N, FILIP J, COKER V S, et al. Microbial reduction of natural Fe(Ⅲ) minerals; toward the sustainable production of functional magnetic nanoparticles[J]. Frontiers in Environmental Science, 2018, 6:127-138.
|
[24]
|
OREMLAND R S, HERBEL M J, BLUM J S, et al. Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria[J]. Applied and Environmental Microbiology, 2004, 70(1):52-60.
|
[25]
|
LABRENZ M, DRUSCHEL G K, THOMSEN-EBERT T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria[J]. Science, 2000, 290(5497):1744-1747.
|
[26]
|
MOREAU J W, WEBB R I, BANFIELD J F. Ultrastructure, aggregation-state, and crystal growth of biogenic nanocrystalline sphalerite and wurtzite[J]. American Mineralogist, 2004, 89(7):950-960.
|
[27]
|
DIAS C L, OLIVEIRA M L S, HOWER J C, et al. Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil[J]. International Journal of Coal Geology, 2014, 122:50-60.
|
[28]
|
SAIKIA J, NARZARY B, ROY S, et al. Nanominerals, fullerene aggregates, and hazardous elements in coal and coal combustion-generated aerosols:An environmental and toxicological assessment[J]. Chemosphere, 2016, 164:84-91.
|
[29]
|
ACEVEDO-PENA P, CARRERA-CRESPO J E, GONZALEZ F, et al. Effect of heat treatment on the crystal phase composition, semiconducting properties and photoelectrocatalytic color removal efficiency of TiO2 nanotubes arrays[J]. Electrochimica Acta, 2014, 140:564-571.
|
[30]
|
WIESNER M R, LOWRY G V, ALVAREZ P, et al. Assessing the risks of manufactured nanomaterials[J]. Environmental Science & Technology, 2006, 40(14):4336-4345.
|
[31]
|
JU-NAM Y, LEAD J R. Manufactured nanoparticles:an overview of their chemistry, interactions and potential environmental implications[J]. Science of the Total Environment, 2008, 400(1-3):396-414.
|
[32]
|
YUAN Y, HUANG G F, HU W Y, et al. Tunable synthesis of various ZnO architectural structures with enhanced photocatalytic activities[J]. Materials Letters, 2016, 175:68-71.
|
[33]
|
LOWRY G V, GREGORY K B, APTE S C, et al. Transformations of nanomaterials in the environment[J]. Environmental Science & Technology, 2012, 46(13):6893-6899.
|
[34]
|
STREHLAU J H, STEMIG M S, PENN R L, et al. Facet-dependent oxidative goethite growth as a function of aqueous solution conditions[J]. Environmental Science & Technology, 2016, 50(19):10406-10412.
|
[35]
|
ZHANG H, WANG Y, LIU P, et al. Anatase TiO2 crystal facet growth:mechanistic role of hydrofluoric acid and photoelectrocatalytic activity[J]. Acs Applied Materials & Interfaces, 2011, 3(7):2472-2478.
|
[36]
|
RAMANI M, PONNUSAMY S, MUTHAMIZHCHELVAN C, et al. Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity[J]. Colloids and Surfaces B-Biointerfaces, 2014, 117:233-239.
|
[37]
|
WANG Z L, FENG X D. Polyhedral shapes of CeO2 nanoparticles[J]. Journal of Physical Chemistry B, 2003, 107(49):13563-13566.
|
[38]
|
STREHLAU J H, SCHULTZ J D, VINDEDAHL A M, et al. Effect of nonreactive kaolinite on 4-chloronitrobenzene reduction by Fe(Ⅱ) in goethite-kaolinite heterogeneous suspensions[J]. Environmental Science-Nano, 2017, 4(2):325-334.
|
[39]
|
WANG X, XIE Y, BATEER B, et al. Hexagonal FeS nanosheets with high-energy (001) facets:Counter electrode materials superior to platinum for dye-sensitized solar cells[J]. Nano Research, 2016, 9(10):2862-2874.
|
[40]
|
LUNA C, CUAN-GUERRA A D, BARRIGA-CASTRO E D, et al. Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe2O3) nanocrystals[J]. Materials Research Bulletin, 2016, 80:44-52.
|
[41]
|
BENIASH E, AIZENBERG J, ADDADI L, et al. Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth[J]. Proceedings of the Royal Society of London Series B:Biological Sciences, 1997, 264(1380):461-465.
|
[42]
|
RAZ S, HAMILTON P C, WILT F H, et al. The transient phase of amorphous calcium carbonate in sea urchin larval spicules:The involvement of proteins and magnesium ions in its formation and stabilization[J]. Advanced Functional Materials, 2003, 13(6):480-486.
|
[43]
|
MAHAMID J, SHARIR A, ADDADI L, et al. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish:Indications for an amorphous precursor phase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(35):12748-12753.
|
[44]
|
GAL A, KAHIL K, VIDAVSKY N, et al. Particle accretion mechanism underlies biological crystal growth from an amorphous precursor phase[J]. Advanced Functional Materials, 2014, 24(34):5420-5426.
|
[45]
|
YANG H G, SUN C H, QIAO S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature, 2008, 453(7195):638-U634.
|
[46]
|
BAUMANN S O, SCHNEIDER J, STERNIG A, et al. Size effects in MgO cube dissolution[J]. Langmuir, 2015, 31(9):2770-2776.
|
[47]
|
RINGLEB F, STERRER M, FREUND H J. Preparation of Pd-MgO model catalysts by deposition of Pd from aqueous precursor solutions onto Ag (001)-supported MgO (001) thin films[J]. Applied Catalysis a-General, 2014, 474:186-193.
|
[48]
|
NAVROTSKY A, MAZEINA L, MAJZLAN J. Size-driven structural and thermodynamic complexity in iron oxides[J]. Science, 2008, 319(5870):1635-1638.
|
[49]
|
YUWONO V M, BURROWS N D, SOLTIS J A, et al. Aggregation of ferrihydrite nanoparticles in aqueous systems[J]. Faraday Discussions, 2012, 159:235-245.
|
[50]
|
JUN Y W, CASULA M F, SIM J H, et al. Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals[J]. Journal of the American Chemical Society, 2003, 125(51):15981-15985.
|
[51]
|
DE YOREO J J, DOVE P M. Shaping crystals with biomolecules[J]. Science, 2004, 306(5700):1301-1302.
|
[52]
|
ORME C A, NOY A, WIERZBICKI A, et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps[J]. Nature, 2001, 411(6839):775-779.
|
[53]
|
GUO S W, WARD M D, WESSON J A. Direct visualization of calcium oxalate monohydrate crystallization and dissolution with atomic force microscopy and the role of polymeric additives[J]. Langmuir, 2002, 18(11):4284-4291.
|
[54]
|
QIU S R, WIERZBICKI A, ORME C A, et al. Molecular modulation of calcium oxalate crystallization by osteopontin and citrate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(7):1811-1815.
|
[55]
|
STUPP S I, BRAUN P V. Molecular manipulation of microstructures:biomaterials, ceramics, and semiconductors[J]. Science (New York, NY), 1997, 277(5330):1242-1248.
|
[56]
|
WANG D, XU H, MA J, et al. Morphology control studies of MnTiO3 nanostructures with exposed {0001} facets as a high-performance catalyst for water purification[J]. Acs Applied Materials & Interfaces, 2018, 10(37):31631-31640.
|
[57]
|
KUO C H, HUANG M H. Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures[J]. Journal of Physical Chemistry C, 2008, 112(47):18355-18360.
|
[58]
|
LIM S J, KIM W, JUNG S, et al. Anisotropic etching of semiconductor nanocrystals[J]. Chemistry of Materials, 2011, 23(22):5029-5036.
|
[59]
|
LEE S M, JUN Y W, CHO S N, et al. Single-crystalline star-shaped nanocrystals and their evolution:Programming the geometry of nano-building blocks[J]. Journal of the American Chemical Society, 2002, 124(38):11244-11245.
|
[60]
|
WANG H, LIANG Z, TANG M, et al. Self-selective catalyst synthesis for CO2 reduction[J]. Joule, 2019, 3(8):1927-1936.
|
[61]
|
WANG Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies[J]. Journal of Physical Chemistry B, 2000, 104(6):1153-1175.
|
[62]
|
SUN Y G, XIA Y N. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science, 2002, 298(5601):2176-2179.
|
[63]
|
LIN M, TNG L, LIM T Y, et al. Hydrothermal synthesis of octadecahedral hematite (α-Fe2O3) Nanoparticles:An epitaxial growth from goethite (α-FeOOH)[J]. Journal of Physical Chemistry C, 2014, 118(20):10903-10910.
|
[64]
|
HAN X, KUANG Q, JIN M, et al. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties[J]. Journal of the American Chemical Society, 2009, 131(9):3152-3153.
|
[65]
|
BURTON E D, BUSH R T, SULLIVAN L A, et al. Iron-monosulfide oxidation in natural sediments:Resolving microbially mediated S transformations using XANES, electron microscopy, and selective extractions[J]. Environmental Science & Technology, 2009, 43(9):3128-3134.
|
[66]
|
JEONG H Y, HAN Y S, PARK S W, et al. Aerobic oxidation of mackinawite (FeS) and its environmental implication for arsenic mobilization[J]. Geochimica et Cosmochimica Acta, 2010, 74(11):3182-3198.
|
[67]
|
GUEVREMONT J M, STRONGIN D R, SCHOONEN M A A. Thermal chemistry of H2S and H2O on the (100) plane of pyrite; unique reactivity of defect sites[J]. American Mineralogist, 1998, 83(11-12_Part_1):1246-1255.
|
[68]
|
ZHOU Y F, GAO Y, XIE Q Q, et al. Reduction and transformation of nanomagnetite and nanomaghemite by a sulfate-reducing bacterium[J]. Geochimica et Cosmochimica Acta, 2019, 256:66-81.
|
[69]
|
CHERNYSHOVA I V, HOCHELLA M F, JR., MADDEN A S. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition[J]. Physical Chemistry Chemical Physics, 2007, 9(14):1736-1750.
|
[70]
|
FANG C, ZHOU D X, GONG S P. Size-induced phase transition in BaTiO3 nanoceramics described by nano-domains and long-range interaction[J]. Modern Physics Letters B, 2010, 24(20):2161-2170.
|
[71]
|
YANG Y, WANG X, LI L. Crystallization and phase transition of titanium oxide nanotube arrays[J]. Journal of the American Ceramic Society, 2008, 91(2):632-635.
|
[72]
|
YUAN W, YU J, LI H, et al. In situ TEM observation of dissolution and regrowth dynamics of MoO2 nanowires under oxygen[J]. Nano Research, 2017, 10(2):397-404.
|
[73]
|
SIERRA-URIBE H, MARIA CORDOBA-TUTA E, ACEVEDO-PENA P. The effect of the heating rate on anatase crystal orientation and its impact on the photoelectrocatalytic performance of TiO2 nanotube arrays[J]. Journal of the Electrochemical Society, 2017, 164(6):H279-H285.
|
[74]
|
MICHAELIS M, FISCHER C, CIACCHI L C, et al. Variability of zinc oxide dissolution rates[J]. Environmental Science & Technology, 2017, 51(8):4297-4305.
|
[75]
|
BONDARENKO O, JUGANSON K, IVASK A, et al. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro:A critical review[J]. Archives of Toxicology, 2013, 87(7):1181-1200.
|
[76]
|
FAN W, SHI Z, YANG X, et al. Bioaccumulation and biomarker responses of cubic and octahedral Cu2O micro/nanocrystals in Daphnia magna[J]. Water Research, 2012, 46(18):5981-5988.
|
[77]
|
YAN L, DU J, JING C. How TiO2 facets determine arsenic adsorption and photooxidation:spectroscopic and DFT studies[J]. Catalysis Science & Technology, 2016, 6(7):2419-2426.
|
[78]
|
ZHAO W W, TIAN F H, WANG X B, et al. Removal of nitric oxide by the highly reactive anatase TiO2 (001) surface:A density functional theory study[J]. Journal of Colloid and Interface Science, 2014, 430:18-23.
|
[79]
|
LV J, MIAO Y, HUANG Z, et al. Facet-mediated adsorption and molecular fractionation of humic substances on hematite surfaces[J]. Environmental Science & Technology, 2018, 52(20):11660-11669.
|
[80]
|
LIU H, WANG X, PAN C, et al. First-principles study of formaldehyde adsorption on TiO2 rutile (110) and anatase (001) surfaces[J]. Journal of Physical Chemistry C, 2012, 116(14):8044-8053.
|
[81]
|
HU Y Y, ZHANG Y H, REN N, et al. Crystal plane- and size-dependent protein adsorption on nanozeolite[J]. Journal of Physical Chemistry C, 2009, 113(42):18040-18046.
|
[82]
|
HU J, SONG Z, CHEN L, et al. Adsorption properties of MgO (111) nanoplates for the dye pollutants from wastewater[J]. Journal of Chemical and Engineering Data, 2010, 55(9):3742-3748.
|
[83]
|
ZHOU P, ZHU X, YU J, et al. Effects of adsorbed F, OH, and Cl ions on formaldehyde adsorption performance and mechanism of anatase TiO2 nanosheets with exposed {001} facets[J]. Acs Applied Materials & Interfaces, 2013, 5(16):8165-8172.
|
[84]
|
SHAO P, REN Z, TIAN J, et al. Silica hydrogel-mediated dissolution-recrystallization strategy for synthesis of ultrathin α-Fe2O3 nanosheets with highly exposed (110) facets:A superior photocatalyst for degradation of bisphenol[J]. Chemical Engineering Journal, 2017, 323:64-73.
|
[85]
|
ZHANG J, ZHOU D D, DONG S S, et al. Respective construction of Type-Ⅱ and direct Z-scheme heterostructure by selectively depositing CdS on {001} and {101} facets of TiO2 nanosheet with CDots modification:A comprehensive comparison[J]. Journal of Hazardous Materials, 2019, 366:311-320.
|
[86]
|
XU T, YUAN R, XU P C, et al. Synthesis and characterization of monodisperse yttrium aluminum garnet (YAG) micro-crystals with rhombic dodecahedron[J]. Journal of Alloys and Compounds, 2018, 762:537-547.
|
[87]
|
ZOU W, ZHANG L, LIU L, et al. Engineering the Cu2O-reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light[J]. Applied Catalysis B:Environmental, 2016, 181:495-503.
|
[88]
|
HUANG X, HOU X, ZHAO J, et al. Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H2O2 decomposition energetic span[J]. Applied Catalysis B:Environmental, 2016, 181:127-137.
|
[89]
|
LI X, LI T, ZHANG T, et al. Nano-TiO2-catalyzed dehydrochlorination of 1,1,2,2-tetrachloroethane:Roles of crystalline phase and exposed facets[J]. Environmental Science & Technology, 2018, 52:4031-4039.
|
[90]
|
LI G R, HU T, PAN G L, et al. Morphology-function relationship of ZnO:Polar planes, oxygen vacancies, and activity[J]. Journal of Physical Chemistry C, 2008, 112(31):11859-11864.
|
[91]
|
WANG L, CHANG L, ZHAO B, et al. Systematic investigation on morphologies, forming mechanism, photocatalytic and photoluminescent properties of ZnO nanostructures constructed in ionic liquids[J]. Inorganic Chemistry, 2008, 47(5):1443-1452.
|
[92]
|
TALEBIAN N, AMININEZHAD S M, DOUDI M. Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties[J]. Journal of Photochemistry and Photobiology B-Biology, 2013, 120:66-73.
|
[93]
|
FENG Y, CHANG Y, SUN X, et al. Understanding the property-activity relationships of polyhedral cuprous oxide nanocrystals in terms of reactive crystallographic facets[J]. Toxicological Sciences, 2017, 156(2):480-491.
|
[94]
|
REN J, WANG W, SUN S, et al. Crystallography facet-dependent antibacterial activity:The case of Cu2O[J]. Industrial & Engineering Chemistry Research, 2011, 50(17):10366-10369.
|
[95]
|
WANG Q, ZHOU H, LIU X, et al. Facet-dependent generation of superoxide radical anions by ZnO nanomaterials under simulated solar light[J]. Environmental Science-Nano, 2018, 5(12):2864-2875.
|