纳米晶体的晶型和暴露晶面对其环境行为和效应的影响

田莉, 关文宇, 赵振宇, 吉云芸, 张彤. 纳米晶体的晶型和暴露晶面对其环境行为和效应的影响[J]. 环境化学, 2021, (4): 999-1010. doi: 10.7524/j.issn.0254-6108.2019112602
引用本文: 田莉, 关文宇, 赵振宇, 吉云芸, 张彤. 纳米晶体的晶型和暴露晶面对其环境行为和效应的影响[J]. 环境化学, 2021, (4): 999-1010. doi: 10.7524/j.issn.0254-6108.2019112602
TIAN Li, GUAN Wenyu, ZHAO Zhenyu, JI Yunyun, ZHANG Tong. Influence of crystalline phase and exposed facet of nanocrystals on their environmental behavior and impacts[J]. Environmental Chemistry, 2021, (4): 999-1010. doi: 10.7524/j.issn.0254-6108.2019112602
Citation: TIAN Li, GUAN Wenyu, ZHAO Zhenyu, JI Yunyun, ZHANG Tong. Influence of crystalline phase and exposed facet of nanocrystals on their environmental behavior and impacts[J]. Environmental Chemistry, 2021, (4): 999-1010. doi: 10.7524/j.issn.0254-6108.2019112602

纳米晶体的晶型和暴露晶面对其环境行为和效应的影响

    通讯作者: 张彤, E-mail: zhangtong@nankai.edu.cn
  • 基金项目:

    国家自然科学基金(4160309,21976095),天津市自然科学基金(17JCYBJC23100)和高等学校学科创新引智计划(111计划,T2017002)资助.

Influence of crystalline phase and exposed facet of nanocrystals on their environmental behavior and impacts

    Corresponding author: ZHANG Tong, zhangtong@nankai.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (4160309, 21976095), Natural Science Fund of Tianjin (17JCYBJC23100) and Overseas Expertise Introduction Project for Discipline Innovation (111 Project, T2017002).
  • 摘要: 在自然或人为作用下,纳米晶体能够在自然环境中广泛且稳定存在,并具有独特的结构和表面性质.准确预测纳米晶体在环境中的迁移转化及其与其它化合物或生物体的相互作用已成为环境科学领域的热点问题.纳米晶体的结构特征受其生长过程中水化学条件、环境因素等影响,导致其晶型和暴露晶面的不同,显著改变纳米晶体的溶解、吸附、催化等环境行为及其对微生物、甲壳动物、哺乳动物等的毒性效应.本文从环境中纳米晶体的种类和性质、不同晶型和暴露晶面的形成机制及影响因素、晶型和暴露晶面对纳米晶体环境行为和效应的影响等方面进行综述,为研究纳米晶体对营养元素及有毒有害物质的生物地球化学循环过程的影响机制提供科学依据.
  • 加载中
  • [1] HOCHELLA M F. Nanoscience and technology the next revolution in the earth sciences[J]. Earth and Planetary Science Letters, 2002, 203(2):593-605.
    [2] HOCHELLA M F, LOWER S K, MAURICE P A, et al. Nanominerals, mineral nanoparticles, and earth systems[J]. Science, 2008, 319(5870):1631-1635.
    [3] HOCHELLA M F, MOGK D W, RANVILLE J, et al. Natural, incidental, and engineered nanomaterials and their impacts on the earth system[J]. Science, 2019, 363(6434):1414-1425.
    [4] AUFFAN M, ROSE J, BOTTERO J Y, et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective[J]. Nature Nanotechnology, 2009, 4(10):634-641.
    [5] HUANG X, HOU X, SONG F, et al. Facet-dependent Cr(Ⅵ) adsorption of hematite nanocrystals[J]. Environmental Science & Technology, 2016, 50(4):1964-1972.
    [6] KIRKEMINDE A, REN S. Thermodynamic control of iron pyrite nanocrystal synthesis with high photoactivity and stability[J]. Journal of Materials Chemistry A, 2013, 1(1):49-54.
    [7] WANG X, XIE Y, BATEER B, et al. Hexagonal FeS nanosheets with high-energy (001) facets:Counter electrode materials superior to platinum for dye-sensitized solar cells[J]. Nano Research, 2016, 9(10):2862-2874.
    [8] LIU J, ARUGUETE D M, MURAYAMA M, et al. Influence of size and aggregation on the reactivity of an environmentally and industrially relevant manomaterial (PbS)[J]. Environmental Science & Technology, 2009, 43(21):8178-8183.
    [9] LIU L, SUN M, ZHANG H, et al. Facet energy and reactivity versus cytotoxicity:The surprising behavior of CdS nanorods[J]. Nano Letters, 2016, 16(1):688-694.
    [10] YANG D, LIU H, ZHENG Z, et al. An efficient photocatalyst structure:TiO2(B) nanofibers with a shell of anatase nanocrystals[J]. Journal of the American Chemical Society, 2009, 131(49):17885-17893.
    [11] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251):933-937.
    [12] GONG Y, LIU Y, XIONG Z, et al. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles:Reaction mechanisms and effects of stabilizer and water chemistry[J]. Environmental Science & Technology, 2014, 48(7):3986-3994.
    [13] SUN T Y, GOTTSCHALK F, HUNGERBUEHLER K, et al. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials[J]. Environmental Pollution, 2014, 185:69-76.
    [14] BEHRENS P, BAUERLEIN E. Handbook of biomineralization:Biomimetic and bioinspired chemistry[M]. Hoboken:John Wiley and Sons Ltd, 2009.
    [15] BERTHIER P. Analyse de l'halloysite[J]. Annales de Chimie Et de Physique, 1826, 32:332-335.
    [16] YUAN P, TAN D, ANNABI-BERGAYA F. Properties and applications of halloysite nanotubes:Recent research advances and future prospects[J]. Applied Clay Science, 2015, 112:75-93.
    [17] CARRERO S, FERNANDEZ-MARTINEZ A, PEREZ-LOPEZ R, et al. Basaluminite structure and its environmental implications[J].Procedia Earth and Planetary Science, 2017, 17:237-240
    [18] BROWN G E, CALAS G. Mineral-aqueous solution interfaces and their impact on the environment[J]. Geochemical Perspectives, 2012, 1(4-5):483-742.
    [19] TAMRAT W Z, ROSE J, GRAUBY O, et al. Composition and molecular scale structure of nanophases formed by precipitation of biotite weathering products[J]. Geochimica et Cosmochimica Acta, 2018, 229:53-64.
    [20] ZANKER H, HUTTIG G, ARNOLD T, et al. Formation of iron-containing colloids by the weathering of phyllite[J]. Aquatic geochemistry, 2006, 12(4):299-325.
    [21] OLIVEIRA M L S, DA BOIT K, PACHECO F, et al. Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of these compounds on human health[J]. Environmental Research, 2018, 160:562-567.
    [22] WU J, YAO J, CAI Y. Biomineralization of natural nanomaterials[M].Nature's Nanostructures. Singapore:Jenny Stanford Publishing, 2012:225-248.
    [23] JOSHI N, FILIP J, COKER V S, et al. Microbial reduction of natural Fe(Ⅲ) minerals; toward the sustainable production of functional magnetic nanoparticles[J]. Frontiers in Environmental Science, 2018, 6:127-138.
    [24] OREMLAND R S, HERBEL M J, BLUM J S, et al. Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria[J]. Applied and Environmental Microbiology, 2004, 70(1):52-60.
    [25] LABRENZ M, DRUSCHEL G K, THOMSEN-EBERT T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria[J]. Science, 2000, 290(5497):1744-1747.
    [26] MOREAU J W, WEBB R I, BANFIELD J F. Ultrastructure, aggregation-state, and crystal growth of biogenic nanocrystalline sphalerite and wurtzite[J]. American Mineralogist, 2004, 89(7):950-960.
    [27] DIAS C L, OLIVEIRA M L S, HOWER J C, et al. Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil[J]. International Journal of Coal Geology, 2014, 122:50-60.
    [28] SAIKIA J, NARZARY B, ROY S, et al. Nanominerals, fullerene aggregates, and hazardous elements in coal and coal combustion-generated aerosols:An environmental and toxicological assessment[J]. Chemosphere, 2016, 164:84-91.
    [29] ACEVEDO-PENA P, CARRERA-CRESPO J E, GONZALEZ F, et al. Effect of heat treatment on the crystal phase composition, semiconducting properties and photoelectrocatalytic color removal efficiency of TiO2 nanotubes arrays[J]. Electrochimica Acta, 2014, 140:564-571.
    [30] WIESNER M R, LOWRY G V, ALVAREZ P, et al. Assessing the risks of manufactured nanomaterials[J]. Environmental Science & Technology, 2006, 40(14):4336-4345.
    [31] JU-NAM Y, LEAD J R. Manufactured nanoparticles:an overview of their chemistry, interactions and potential environmental implications[J]. Science of the Total Environment, 2008, 400(1-3):396-414.
    [32] YUAN Y, HUANG G F, HU W Y, et al. Tunable synthesis of various ZnO architectural structures with enhanced photocatalytic activities[J]. Materials Letters, 2016, 175:68-71.
    [33] LOWRY G V, GREGORY K B, APTE S C, et al. Transformations of nanomaterials in the environment[J]. Environmental Science & Technology, 2012, 46(13):6893-6899.
    [34] STREHLAU J H, STEMIG M S, PENN R L, et al. Facet-dependent oxidative goethite growth as a function of aqueous solution conditions[J]. Environmental Science & Technology, 2016, 50(19):10406-10412.
    [35] ZHANG H, WANG Y, LIU P, et al. Anatase TiO2 crystal facet growth:mechanistic role of hydrofluoric acid and photoelectrocatalytic activity[J]. Acs Applied Materials & Interfaces, 2011, 3(7):2472-2478.
    [36] RAMANI M, PONNUSAMY S, MUTHAMIZHCHELVAN C, et al. Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity[J]. Colloids and Surfaces B-Biointerfaces, 2014, 117:233-239.
    [37] WANG Z L, FENG X D. Polyhedral shapes of CeO2 nanoparticles[J]. Journal of Physical Chemistry B, 2003, 107(49):13563-13566.
    [38] STREHLAU J H, SCHULTZ J D, VINDEDAHL A M, et al. Effect of nonreactive kaolinite on 4-chloronitrobenzene reduction by Fe(Ⅱ) in goethite-kaolinite heterogeneous suspensions[J]. Environmental Science-Nano, 2017, 4(2):325-334.
    [39] WANG X, XIE Y, BATEER B, et al. Hexagonal FeS nanosheets with high-energy (001) facets:Counter electrode materials superior to platinum for dye-sensitized solar cells[J]. Nano Research, 2016, 9(10):2862-2874.
    [40] LUNA C, CUAN-GUERRA A D, BARRIGA-CASTRO E D, et al. Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe2O3) nanocrystals[J]. Materials Research Bulletin, 2016, 80:44-52.
    [41] BENIASH E, AIZENBERG J, ADDADI L, et al. Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth[J]. Proceedings of the Royal Society of London Series B:Biological Sciences, 1997, 264(1380):461-465.
    [42] RAZ S, HAMILTON P C, WILT F H, et al. The transient phase of amorphous calcium carbonate in sea urchin larval spicules:The involvement of proteins and magnesium ions in its formation and stabilization[J]. Advanced Functional Materials, 2003, 13(6):480-486.
    [43] MAHAMID J, SHARIR A, ADDADI L, et al. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish:Indications for an amorphous precursor phase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(35):12748-12753.
    [44] GAL A, KAHIL K, VIDAVSKY N, et al. Particle accretion mechanism underlies biological crystal growth from an amorphous precursor phase[J]. Advanced Functional Materials, 2014, 24(34):5420-5426.
    [45] YANG H G, SUN C H, QIAO S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature, 2008, 453(7195):638-U634.
    [46] BAUMANN S O, SCHNEIDER J, STERNIG A, et al. Size effects in MgO cube dissolution[J]. Langmuir, 2015, 31(9):2770-2776.
    [47] RINGLEB F, STERRER M, FREUND H J. Preparation of Pd-MgO model catalysts by deposition of Pd from aqueous precursor solutions onto Ag (001)-supported MgO (001) thin films[J]. Applied Catalysis a-General, 2014, 474:186-193.
    [48] NAVROTSKY A, MAZEINA L, MAJZLAN J. Size-driven structural and thermodynamic complexity in iron oxides[J]. Science, 2008, 319(5870):1635-1638.
    [49] YUWONO V M, BURROWS N D, SOLTIS J A, et al. Aggregation of ferrihydrite nanoparticles in aqueous systems[J]. Faraday Discussions, 2012, 159:235-245.
    [50] JUN Y W, CASULA M F, SIM J H, et al. Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals[J]. Journal of the American Chemical Society, 2003, 125(51):15981-15985.
    [51] DE YOREO J J, DOVE P M. Shaping crystals with biomolecules[J]. Science, 2004, 306(5700):1301-1302.
    [52] ORME C A, NOY A, WIERZBICKI A, et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps[J]. Nature, 2001, 411(6839):775-779.
    [53] GUO S W, WARD M D, WESSON J A. Direct visualization of calcium oxalate monohydrate crystallization and dissolution with atomic force microscopy and the role of polymeric additives[J]. Langmuir, 2002, 18(11):4284-4291.
    [54] QIU S R, WIERZBICKI A, ORME C A, et al. Molecular modulation of calcium oxalate crystallization by osteopontin and citrate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(7):1811-1815.
    [55] STUPP S I, BRAUN P V. Molecular manipulation of microstructures:biomaterials, ceramics, and semiconductors[J]. Science (New York, NY), 1997, 277(5330):1242-1248.
    [56] WANG D, XU H, MA J, et al. Morphology control studies of MnTiO3 nanostructures with exposed {0001} facets as a high-performance catalyst for water purification[J]. Acs Applied Materials & Interfaces, 2018, 10(37):31631-31640.
    [57] KUO C H, HUANG M H. Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures[J]. Journal of Physical Chemistry C, 2008, 112(47):18355-18360.
    [58] LIM S J, KIM W, JUNG S, et al. Anisotropic etching of semiconductor nanocrystals[J]. Chemistry of Materials, 2011, 23(22):5029-5036.
    [59] LEE S M, JUN Y W, CHO S N, et al. Single-crystalline star-shaped nanocrystals and their evolution:Programming the geometry of nano-building blocks[J]. Journal of the American Chemical Society, 2002, 124(38):11244-11245.
    [60] WANG H, LIANG Z, TANG M, et al. Self-selective catalyst synthesis for CO2 reduction[J]. Joule, 2019, 3(8):1927-1936.
    [61] WANG Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies[J]. Journal of Physical Chemistry B, 2000, 104(6):1153-1175.
    [62] SUN Y G, XIA Y N. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science, 2002, 298(5601):2176-2179.
    [63] LIN M, TNG L, LIM T Y, et al. Hydrothermal synthesis of octadecahedral hematite (α-Fe2O3) Nanoparticles:An epitaxial growth from goethite (α-FeOOH)[J]. Journal of Physical Chemistry C, 2014, 118(20):10903-10910.
    [64] HAN X, KUANG Q, JIN M, et al. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties[J]. Journal of the American Chemical Society, 2009, 131(9):3152-3153.
    [65] BURTON E D, BUSH R T, SULLIVAN L A, et al. Iron-monosulfide oxidation in natural sediments:Resolving microbially mediated S transformations using XANES, electron microscopy, and selective extractions[J]. Environmental Science & Technology, 2009, 43(9):3128-3134.
    [66] JEONG H Y, HAN Y S, PARK S W, et al. Aerobic oxidation of mackinawite (FeS) and its environmental implication for arsenic mobilization[J]. Geochimica et Cosmochimica Acta, 2010, 74(11):3182-3198.
    [67] GUEVREMONT J M, STRONGIN D R, SCHOONEN M A A. Thermal chemistry of H2S and H2O on the (100) plane of pyrite; unique reactivity of defect sites[J]. American Mineralogist, 1998, 83(11-12_Part_1):1246-1255.
    [68] ZHOU Y F, GAO Y, XIE Q Q, et al. Reduction and transformation of nanomagnetite and nanomaghemite by a sulfate-reducing bacterium[J]. Geochimica et Cosmochimica Acta, 2019, 256:66-81.
    [69] CHERNYSHOVA I V, HOCHELLA M F, JR., MADDEN A S. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition[J]. Physical Chemistry Chemical Physics, 2007, 9(14):1736-1750.
    [70] FANG C, ZHOU D X, GONG S P. Size-induced phase transition in BaTiO3 nanoceramics described by nano-domains and long-range interaction[J]. Modern Physics Letters B, 2010, 24(20):2161-2170.
    [71] YANG Y, WANG X, LI L. Crystallization and phase transition of titanium oxide nanotube arrays[J]. Journal of the American Ceramic Society, 2008, 91(2):632-635.
    [72] YUAN W, YU J, LI H, et al. In situ TEM observation of dissolution and regrowth dynamics of MoO2 nanowires under oxygen[J]. Nano Research, 2017, 10(2):397-404.
    [73] SIERRA-URIBE H, MARIA CORDOBA-TUTA E, ACEVEDO-PENA P. The effect of the heating rate on anatase crystal orientation and its impact on the photoelectrocatalytic performance of TiO2 nanotube arrays[J]. Journal of the Electrochemical Society, 2017, 164(6):H279-H285.
    [74] MICHAELIS M, FISCHER C, CIACCHI L C, et al. Variability of zinc oxide dissolution rates[J]. Environmental Science & Technology, 2017, 51(8):4297-4305.
    [75] BONDARENKO O, JUGANSON K, IVASK A, et al. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro:A critical review[J]. Archives of Toxicology, 2013, 87(7):1181-1200.
    [76] FAN W, SHI Z, YANG X, et al. Bioaccumulation and biomarker responses of cubic and octahedral Cu2O micro/nanocrystals in Daphnia magna[J]. Water Research, 2012, 46(18):5981-5988.
    [77] YAN L, DU J, JING C. How TiO2 facets determine arsenic adsorption and photooxidation:spectroscopic and DFT studies[J]. Catalysis Science & Technology, 2016, 6(7):2419-2426.
    [78] ZHAO W W, TIAN F H, WANG X B, et al. Removal of nitric oxide by the highly reactive anatase TiO2 (001) surface:A density functional theory study[J]. Journal of Colloid and Interface Science, 2014, 430:18-23.
    [79] LV J, MIAO Y, HUANG Z, et al. Facet-mediated adsorption and molecular fractionation of humic substances on hematite surfaces[J]. Environmental Science & Technology, 2018, 52(20):11660-11669.
    [80] LIU H, WANG X, PAN C, et al. First-principles study of formaldehyde adsorption on TiO2 rutile (110) and anatase (001) surfaces[J]. Journal of Physical Chemistry C, 2012, 116(14):8044-8053.
    [81] HU Y Y, ZHANG Y H, REN N, et al. Crystal plane- and size-dependent protein adsorption on nanozeolite[J]. Journal of Physical Chemistry C, 2009, 113(42):18040-18046.
    [82] HU J, SONG Z, CHEN L, et al. Adsorption properties of MgO (111) nanoplates for the dye pollutants from wastewater[J]. Journal of Chemical and Engineering Data, 2010, 55(9):3742-3748.
    [83] ZHOU P, ZHU X, YU J, et al. Effects of adsorbed F, OH, and Cl ions on formaldehyde adsorption performance and mechanism of anatase TiO2 nanosheets with exposed {001} facets[J]. Acs Applied Materials & Interfaces, 2013, 5(16):8165-8172.
    [84] SHAO P, REN Z, TIAN J, et al. Silica hydrogel-mediated dissolution-recrystallization strategy for synthesis of ultrathin α-Fe2O3 nanosheets with highly exposed (110) facets:A superior photocatalyst for degradation of bisphenol[J]. Chemical Engineering Journal, 2017, 323:64-73.
    [85] ZHANG J, ZHOU D D, DONG S S, et al. Respective construction of Type-Ⅱ and direct Z-scheme heterostructure by selectively depositing CdS on {001} and {101} facets of TiO2 nanosheet with CDots modification:A comprehensive comparison[J]. Journal of Hazardous Materials, 2019, 366:311-320.
    [86] XU T, YUAN R, XU P C, et al. Synthesis and characterization of monodisperse yttrium aluminum garnet (YAG) micro-crystals with rhombic dodecahedron[J]. Journal of Alloys and Compounds, 2018, 762:537-547.
    [87] ZOU W, ZHANG L, LIU L, et al. Engineering the Cu2O-reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light[J]. Applied Catalysis B:Environmental, 2016, 181:495-503.
    [88] HUANG X, HOU X, ZHAO J, et al. Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H2O2 decomposition energetic span[J]. Applied Catalysis B:Environmental, 2016, 181:127-137.
    [89] LI X, LI T, ZHANG T, et al. Nano-TiO2-catalyzed dehydrochlorination of 1,1,2,2-tetrachloroethane:Roles of crystalline phase and exposed facets[J]. Environmental Science & Technology, 2018, 52:4031-4039.
    [90] LI G R, HU T, PAN G L, et al. Morphology-function relationship of ZnO:Polar planes, oxygen vacancies, and activity[J]. Journal of Physical Chemistry C, 2008, 112(31):11859-11864.
    [91] WANG L, CHANG L, ZHAO B, et al. Systematic investigation on morphologies, forming mechanism, photocatalytic and photoluminescent properties of ZnO nanostructures constructed in ionic liquids[J]. Inorganic Chemistry, 2008, 47(5):1443-1452.
    [92] TALEBIAN N, AMININEZHAD S M, DOUDI M. Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties[J]. Journal of Photochemistry and Photobiology B-Biology, 2013, 120:66-73.
    [93] FENG Y, CHANG Y, SUN X, et al. Understanding the property-activity relationships of polyhedral cuprous oxide nanocrystals in terms of reactive crystallographic facets[J]. Toxicological Sciences, 2017, 156(2):480-491.
    [94] REN J, WANG W, SUN S, et al. Crystallography facet-dependent antibacterial activity:The case of Cu2O[J]. Industrial & Engineering Chemistry Research, 2011, 50(17):10366-10369.
    [95] WANG Q, ZHOU H, LIU X, et al. Facet-dependent generation of superoxide radical anions by ZnO nanomaterials under simulated solar light[J]. Environmental Science-Nano, 2018, 5(12):2864-2875.
  • 加载中
计量
  • 文章访问数:  2587
  • HTML全文浏览数:  2587
  • PDF下载数:  96
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-11-26
田莉, 关文宇, 赵振宇, 吉云芸, 张彤. 纳米晶体的晶型和暴露晶面对其环境行为和效应的影响[J]. 环境化学, 2021, (4): 999-1010. doi: 10.7524/j.issn.0254-6108.2019112602
引用本文: 田莉, 关文宇, 赵振宇, 吉云芸, 张彤. 纳米晶体的晶型和暴露晶面对其环境行为和效应的影响[J]. 环境化学, 2021, (4): 999-1010. doi: 10.7524/j.issn.0254-6108.2019112602
TIAN Li, GUAN Wenyu, ZHAO Zhenyu, JI Yunyun, ZHANG Tong. Influence of crystalline phase and exposed facet of nanocrystals on their environmental behavior and impacts[J]. Environmental Chemistry, 2021, (4): 999-1010. doi: 10.7524/j.issn.0254-6108.2019112602
Citation: TIAN Li, GUAN Wenyu, ZHAO Zhenyu, JI Yunyun, ZHANG Tong. Influence of crystalline phase and exposed facet of nanocrystals on their environmental behavior and impacts[J]. Environmental Chemistry, 2021, (4): 999-1010. doi: 10.7524/j.issn.0254-6108.2019112602

纳米晶体的晶型和暴露晶面对其环境行为和效应的影响

    通讯作者: 张彤, E-mail: zhangtong@nankai.edu.cn
  • 南开大学环境科学与工程学院, 环境污染过程与基准教育部重点实验室, 天津市城市生态环境修复与污染防治重点实验室, 天津, 300350
基金项目:

国家自然科学基金(4160309,21976095),天津市自然科学基金(17JCYBJC23100)和高等学校学科创新引智计划(111计划,T2017002)资助.

摘要: 在自然或人为作用下,纳米晶体能够在自然环境中广泛且稳定存在,并具有独特的结构和表面性质.准确预测纳米晶体在环境中的迁移转化及其与其它化合物或生物体的相互作用已成为环境科学领域的热点问题.纳米晶体的结构特征受其生长过程中水化学条件、环境因素等影响,导致其晶型和暴露晶面的不同,显著改变纳米晶体的溶解、吸附、催化等环境行为及其对微生物、甲壳动物、哺乳动物等的毒性效应.本文从环境中纳米晶体的种类和性质、不同晶型和暴露晶面的形成机制及影响因素、晶型和暴露晶面对纳米晶体环境行为和效应的影响等方面进行综述,为研究纳米晶体对营养元素及有毒有害物质的生物地球化学循环过程的影响机制提供科学依据.

English Abstract

参考文献 (95)

返回顶部

目录

/

返回文章
返回