肠道微生物与环境健康关系的研究进展与展望
Research progress and prospect of relationship between gut microbiota and environmental health
-
摘要: 尽管肠道微生物群落在调节宿主多种生理功能的稳态以及抵抗环境污染物的毒性等方面至关重要,但是其在环境健康上的作用直到近几年才引起关注.本综述主要概述了环境污染物对肠道微生物的作用导致的健康效应的最新研究进展.发展迅速的高通量测序平台与合成生态学方法有助于快速确定肠道微生物组成,结合信息化综合分析方法可进一步探明肠道微生物对污染物的调节机制.本综述进一步重点举例,讨论了重金属、有机污染物、纳米颗粒、微塑料与肠道微生物群落相互作用的机制,及其对宿主健康产生的影响.目前对于肠道微生物群落介导环境污染物诱发环境健康效应的研究还不够成熟,存在诸多需要克服的科学技术难点.综述在最后从研究对象、技术方法和应用方面提出了对未来研究内容的展望.Abstract: Although gut microbiota communities are crucial in regulating the homeostasis of host physiological functions and resisting the toxicity of environmental pollutants, their role in environmental health has not attracted attention until recently. This review mainly summarized the latest research progress on health effects caused by the effects of environmental pollutants on gut microbiota. The use of high-throughput sequencing platform and synthetic ecology methods had made rapid progress in determining the composition of gut microbiota. The combination of information-based comprehensive analysis methods was helpful to explore the regulation mechanism of intestinal microorganisms on pollutants. Furthermore, this review focused on examples and discussed the mechanism of interaction between heavy metals, organic pollutants, nanoparticles, microplastics and intestinal microbial communities, and its impact on health of hosts. The research on gut microbiota community in environmental health has just started, and there are many scientific and technical difficulties to be overcome. At the end of the review, the author pointed out the prospect of future research contents from the aspects of research objects, technical methods and applications.
-
Key words:
- gut microbiota /
- environmental health /
- environmental toxicology /
- heavy metals /
- organic pollutants /
- nanoparticles
-
[1] ENGEL P, MORAN N A. The gut microbiota of insects-diversity in structure and function[J]. Fems Microbiology Reviews, 2013, 37(5):699-735. [2] ROBERTSON R C, MANGES A R, FINLAY B B, et al. The human microbiome and child growth-first 1000 days and beyond[J]. Trends in Microbiology, 2019, 27(2):131-147. [3] SOMMER F, BACKHED F. The gut microbiota-masters of host development and physiology[J]. Nature Reviews Microbiology, 2013, 11(4):227-238. [4] ZMORA N, SUEZ J, ELINAV E, et al. You are what you eat:Diet, health and the gut microbiota[J]. Nature Reviews Gastroenterology & Hepatology, 2019, 16(1):35-56. [5] FLINT H J, SCOTT K P, LOUIS P, et al. The role of the gut microbiota in nutrition and health[J]. Nature Reviews Gastroenterology & Hepatology, 2012, 9(10):577-589. [6] ARONWISNEWSKY J, VIGLIOTTI C, WITJES J J, et al. Gut microbiota and human NAFLD:Disentangling microbial signatures from metabolic disorders[J]. Nature Reviews Gastroenterology & Hepatology, 2020, 17:279-297. [7] WANG Y, HUANG W E, CUI L, et al. Single cell stable isotope probing in microbiology using Raman microspectroscopy[J]. Current Opinion in Biotechnology, 2016, 41:34-42. [8] WU F, DEKKER C. Nanofabricated structures and microfluidic devices for bacteria:From techniques to biology[J]. Chemical Society Reviews, 2016, 45(2):268-280. [9] LEE K S, PALATINSZKY M, PEREIRA F C, et al. An automated Raman-based platform for the sorting of live cells by functional properties[J]. Nature Microbiology, 2019, 4(6):1035-1048. [10] 方涵书, 郎明非, 孙晶. 细胞周期分析新方法[J]. 分析化学, 2019, 47(9):1293-1301. FANG H S,LANG M F, SUN J. New methods for cell cycle analysis[J]. Chinese Journal of Analytical Chemistry, 2019, 47(9):1293-1301(in Chinese).
[11] HUYS G R, RAES J. Go with the flow or solitary confinement:A look inside the single-cell toolbox for isolation of rare and uncultured microbes[J]. Current Opinion in Microbiology, 2018, 44:1-8. [12] BUTLER K T, DAVIES D W, CARTWRIGHT H M, et al. Machine learning for molecular and materials science[J]. Nature, 2018, 559(7715):547-555. [13] DE SANTIS S, MORATAL D, CANALS S, et al. Radiomicrobiomics:Advancing along the gut-brain axis through big data analysis[J]. Neuroscience, 2017, 403:145-149. [14] HUANG S, CAI N, PACHECO P P, et al. Applications of Support Vector Machine (SVM) learning in cancer genomics[J]. Cancer Genomics & Proteomics, 2018, 15(1):41-51. [15] REN Z, LI A, JIANG J, et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma[J]. Gut, 2019, 68(6):1014-1023. [16] DEVKOTA S. Big data and tiny proteins:Shining a light on the dark corners of the gut microbiome[J]. Nature Reviews Gastroenterology & Hepatology, 2020, 17(2):68-69. [17] MOELLER A H, CAROQUINTERO A, MJUNGU D, et al. Cospeciation of gut microbiota with hominids[J]. Science, 2016, 353(6297):380-382. [18] BUFFIE C G, BUCCI V, STEIN R R, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile[J]. Nature, 2015, 517(7533):205-208. [19] ECKBURG P B, BIK E M, BERNSTEIN C N, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308(5728):1635-1638. [20] DAVID L A, MAURICE C F, CARMODY R N, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505(7484):559-563. [21] CLAESSON M J, CUSACK S, OSULLIVAN O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Suppl 1):4586-4591. [22] SALEH M, TRINCHIERI G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer[J]. Nature Reviews Immunology, 2011, 11(1):9-20. [23] TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122):1027-1031. [24] QIN J, LI Y, CAI Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490(7418):55-60. [25] SHERWIN E, DINAN T G, CRYAN J F, et al. Recent developments in understanding the role of the gut microbiota in brain health and disease[J]. Annals of the New York Academy of Sciences, 2018, 1420(1):5-25. [26] SARKAR A, LEHTO S M, HARTY S, et al. Psychobiotics and the manipulation of Bacteria-Gut-Brain signals[J]. Trends in Neurosciences, 2016, 39(11):763-781. [27] BUROKAS A, ARBOLEYA S, MOLONEY R D, et al. Targeting the microbiota-gut-brain axis:Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice[J]. Biological Psychiatry, 2017, 82(7):472-487. [28] QUINN R A, MELNIK A V, VRBANAC A, et al. Global chemical effects of the microbiome include new bile-acid conjugations[J]. Nature, 2020, 579(7797):123-129. [29] YAO Q, YANG H, WANG X, et al. Effects of hexavalent chromium on intestinal histology and microbiota in Bufo gargarizans tadpoles[J]. Chemosphere, 2019, 216:313-323. [30] EGGERS S, SAFDAR N, SETHI A K, et al. Urinary lead concentration and composition of the adult gut microbiota in a cross-sectional population-based sample[J]. Environment International, 2019, 133:105122. doi:10.1016/j.envint.2019.105122. [31] LI X, BREJNROD A, ERNST M, et al. Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites[J]. Environment International, 2019, 126:454-467. [32] FORSLUND K, HILDEBRAND F, NIELSEN T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota[J]. Nature, 2015, 528(7581):262-266. [33] SUBUDHI S, BISHT V, BATTA N, et al. Purification and characterization of exopolysaccharide bioflocculant produced by heavy metal resistant Achromobacter xylosoxidans[J]. Carbohydrate Polymers, 2016, 137:441-451. [34] MOSA K A, SAADOUN I, KUMAR K, et al. Potential biotechnological strategies for the cleanup of heavy metals and metalloids[J]. Frontiers in Plant Science, 2016, 7:303. doi:10.3389/fpls.2016.00303. [35] XIE P, HAO X, HERZBERG M, et al. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China[J]. Journal of Environmental Sciences-China, 2015, 27(1):179-187. [36] ROWLAND I, DAVIES M J, GRASSO P, et al. Metabolism of methylmercuric chloride by the gastro-intestinal flora of the rat[J]. Xenobiotica, 1978, 8(1):37-43. [37] LIEBERT C, WIREMAN J, SMITH T, et al. Phylogeny of mercury resistance (mer) operons of gram-negative bacteria isolated from the fecal flora of primates.[J]. Applied and Environmental Microbiology, 1997, 63(3):1066-1076. [38] ROTHENBERG S E, KEISER S, AJAMI N J, et al. The role of gut microbiota in fetal methylmercury exposure:Insights from a pilot study[J]. Toxicology Letters, 2016, 242:60-67. [39] ZHAI Q, WANG J, CEN S, et al. Modulation of the gut microbiota by a galactooligosaccharide protects against heavy metal lead accumulation in mice[J]. Food & Function, 2019, 10(6):3768-3781. [40] ZHOU G, YANG X, ZHENG F, et al. Arsenic transformation mediated by gut microbiota affects the fecundity of Caenorhabditis elegans[J]. Environmental Pollution, 2020, 260:113991. doi:10.1016/j.envpol.2020.113991. [41] RADISAVLJEVIC N, CIRSTEA M, FINLAY B B, et al. Bottoms up:The role of gut microbiota in brain health[J]. Environmental Microbiology, 2019, 21(9):3197-3211. [42] ZHAI Q, CEN S, JIANG J, et al. Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder:A pilot study of Chinese children[J]. Environmental Research, 2019, 171:501-509. [43] WANG J, HU W, YANG H, et al. Arsenic concentrations, diversity and co-occurrence patterns of bacterial and fungal communities in the feces of mice under sub-chronic arsenic exposure through food[J]. Environment International, 2020, 138:105600. doi:10.1016/j.envint.2020.105600. [44] MISAL S A, GAWAI K R. Azoreductase:A key player of xenobiotic metabolism[J]. Bioresources and Bioprocessing, 2018, 5(1):17. doi:10.1186/s40643-018-0206-8. [45] KOPPEL N, REKDAL V M, BALSKUS E P, et al. Chemical transformation of xenobiotics by the human gut microbiota[J]. Science, 2017, 356(6344):2770. doi:10.1126/science.aag2770. [46] PAN H, FENG J, HE G, et al. Evaluation of impact of exposure of Sudan azo dyes and their metabolites on human intestinal bacteria[J]. Anaerobe, 2012, 18(4):445-453. [47] KOREM T, ZEEVI D, SUEZ J, et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples[J]. Science, 2015, 349(6252):1101-1106. [48] ZHANG L, NICHOLS R G, PATTERSON A D, et al. The aryl hydrocarbon receptor as a moderator of host-microbiota communication[J]. Current Opinion in Toxicology, 2017, 2:30-35. [49] METIDJI A, OMENETTI S, CROTTA S, et al. The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity[J]. Immunity, 2018, 49(2):1542. doi:10.1016/j.immuni.2018.07.010. [50] NICHOLS R G, ZHANG J, CAI J, et al. Metatranscriptomic analysis of the mouse gut microbiome response to the persistent organic pollutant 2,3,7,8-Tetrachlorodibenzofuran[J]. Metabolites, 2020, 10(1):1. Doi:10.3390/metabo10010001. [51] LIU M, SONG S, HU C, et al. Dietary administration of probiotic Lactobacillus rhamnosus modulates the neurological toxicities of perfluorobutanesulfonate in zebrafish[J]. Environmental Pollution, 2020, 265:114832. doi:10.1016/j.envpol.2020.114832. [52] SCHMID R B, LEHMAN R M, BROZEL V S, et al. An indigenous gut bacterium, Enterococcus faecalis (Lactobacillales:Enterococcaceae), increases seed consumption by Harpalus pensylvanicus (Coleoptera:Carabidae)[J]. Florida Entomologist, 2014, 97(2):575-584. [53] ZHU D, ZHENG F, CHEN Q, et al. Exposure of a soil collembolan to Ag nanoparticles and AgNO3 disturbs its associated microbiota and lowers the incidence of antibiotic resistance genes in the gut[J]. Environmental Science & Technology, 2018, 52(21):12748-12756. [54] MA J, CHEN Q, OCONNOR P, et al. Does soil CuO nanoparticles pollution alter the gut microbiota and resistome of Enchytraeus crypticus[J]. Environmental Pollution, 2020, 256:113463. doi:10.1016/j.envpol.2019.113463 [55] PATSIOU D, RIOCUBILLEDO C D, CATARINO A I, et al. Exposure to Pb-halide perovskite nanoparticles can deliver bioavailable Pb but does not alter endogenous gut microbiota in zebrafish[J]. Science of the Total Environment, 2020, 715:136941. doi:10.1016/j.scitotenv.2020.136941. [56] CHEN L, GUO Y, HU C, et al. Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A:Implications for host health in zebrafish[J]. Environmental Pollution, 2018, 234:307-317. [57] CATTò C, GARUGLIERI E, BORRUSO L, et al. Impacts of dietary silver nanoparticles and probiotic administration on the microbiota of an in-vitro gut model[J]. Environmental Pollution, 2019, 245:754-763. [58] JIN Y, XIA J, PAN Z, et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish[J]. Environmental Pollution, 2018, 235:322-329. [59] LU L, WAN Z, LUO T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice[J]. Science of the Total Environment, 2018, 631:449-458. [60] JIN Y, LU L, TU W, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice[J]. Science of the Total Environment, 2019, 649:308-317. [61] QIAO R, DENG Y, ZHANG S, et al. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish[J]. Chemosphere, 2019, 236:124334. doi:10.1016/j.chemosphere.2019.07.065
计量
- 文章访问数: 4213
- HTML全文浏览数: 4213
- PDF下载数: 191
- 施引文献: 0