ENGEL P, MORAN N A. The gut microbiota of insects-diversity in structure and function[J]. Fems Microbiology Reviews, 2013, 37(5):699-735.
|
ROBERTSON R C, MANGES A R, FINLAY B B, et al. The human microbiome and child growth-first 1000 days and beyond[J]. Trends in Microbiology, 2019, 27(2):131-147.
|
SOMMER F, BACKHED F. The gut microbiota-masters of host development and physiology[J]. Nature Reviews Microbiology, 2013, 11(4):227-238.
|
ZMORA N, SUEZ J, ELINAV E, et al. You are what you eat:Diet, health and the gut microbiota[J]. Nature Reviews Gastroenterology & Hepatology, 2019, 16(1):35-56.
|
FLINT H J, SCOTT K P, LOUIS P, et al. The role of the gut microbiota in nutrition and health[J]. Nature Reviews Gastroenterology & Hepatology, 2012, 9(10):577-589.
|
ARONWISNEWSKY J, VIGLIOTTI C, WITJES J J, et al. Gut microbiota and human NAFLD:Disentangling microbial signatures from metabolic disorders[J]. Nature Reviews Gastroenterology & Hepatology, 2020, 17:279-297.
|
WANG Y, HUANG W E, CUI L, et al. Single cell stable isotope probing in microbiology using Raman microspectroscopy[J]. Current Opinion in Biotechnology, 2016, 41:34-42.
|
WU F, DEKKER C. Nanofabricated structures and microfluidic devices for bacteria:From techniques to biology[J]. Chemical Society Reviews, 2016, 45(2):268-280.
|
LEE K S, PALATINSZKY M, PEREIRA F C, et al. An automated Raman-based platform for the sorting of live cells by functional properties[J]. Nature Microbiology, 2019, 4(6):1035-1048.
|
方涵书, 郎明非, 孙晶. 细胞周期分析新方法[J]. 分析化学, 2019, 47(9):1293-1301.
FANG H S,LANG M F, SUN J. New methods for cell cycle analysis[J]. Chinese Journal of Analytical Chemistry, 2019, 47(9):1293-1301(in Chinese).
|
HUYS G R, RAES J. Go with the flow or solitary confinement:A look inside the single-cell toolbox for isolation of rare and uncultured microbes[J]. Current Opinion in Microbiology, 2018, 44:1-8.
|
BUTLER K T, DAVIES D W, CARTWRIGHT H M, et al. Machine learning for molecular and materials science[J]. Nature, 2018, 559(7715):547-555.
|
DE SANTIS S, MORATAL D, CANALS S, et al. Radiomicrobiomics:Advancing along the gut-brain axis through big data analysis[J]. Neuroscience, 2017, 403:145-149.
|
HUANG S, CAI N, PACHECO P P, et al. Applications of Support Vector Machine (SVM) learning in cancer genomics[J]. Cancer Genomics & Proteomics, 2018, 15(1):41-51.
|
REN Z, LI A, JIANG J, et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma[J]. Gut, 2019, 68(6):1014-1023.
|
DEVKOTA S. Big data and tiny proteins:Shining a light on the dark corners of the gut microbiome[J]. Nature Reviews Gastroenterology & Hepatology, 2020, 17(2):68-69.
|
MOELLER A H, CAROQUINTERO A, MJUNGU D, et al. Cospeciation of gut microbiota with hominids[J]. Science, 2016, 353(6297):380-382.
|
BUFFIE C G, BUCCI V, STEIN R R, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile[J]. Nature, 2015, 517(7533):205-208.
|
ECKBURG P B, BIK E M, BERNSTEIN C N, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308(5728):1635-1638.
|
DAVID L A, MAURICE C F, CARMODY R N, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505(7484):559-563.
|
CLAESSON M J, CUSACK S, OSULLIVAN O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Suppl 1):4586-4591.
|
SALEH M, TRINCHIERI G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer[J]. Nature Reviews Immunology, 2011, 11(1):9-20.
|
TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122):1027-1031.
|
QIN J, LI Y, CAI Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490(7418):55-60.
|
SHERWIN E, DINAN T G, CRYAN J F, et al. Recent developments in understanding the role of the gut microbiota in brain health and disease[J]. Annals of the New York Academy of Sciences, 2018, 1420(1):5-25.
|
SARKAR A, LEHTO S M, HARTY S, et al. Psychobiotics and the manipulation of Bacteria-Gut-Brain signals[J]. Trends in Neurosciences, 2016, 39(11):763-781.
|
BUROKAS A, ARBOLEYA S, MOLONEY R D, et al. Targeting the microbiota-gut-brain axis:Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice[J]. Biological Psychiatry, 2017, 82(7):472-487.
|
QUINN R A, MELNIK A V, VRBANAC A, et al. Global chemical effects of the microbiome include new bile-acid conjugations[J]. Nature, 2020, 579(7797):123-129.
|
YAO Q, YANG H, WANG X, et al. Effects of hexavalent chromium on intestinal histology and microbiota in Bufo gargarizans tadpoles[J]. Chemosphere, 2019, 216:313-323.
|
EGGERS S, SAFDAR N, SETHI A K, et al. Urinary lead concentration and composition of the adult gut microbiota in a cross-sectional population-based sample[J]. Environment International, 2019, 133:105122. doi:10.1016/j.envint.2019.105122.
|
LI X, BREJNROD A, ERNST M, et al. Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites[J]. Environment International, 2019, 126:454-467.
|
FORSLUND K, HILDEBRAND F, NIELSEN T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota[J]. Nature, 2015, 528(7581):262-266.
|
SUBUDHI S, BISHT V, BATTA N, et al. Purification and characterization of exopolysaccharide bioflocculant produced by heavy metal resistant Achromobacter xylosoxidans[J]. Carbohydrate Polymers, 2016, 137:441-451.
|
MOSA K A, SAADOUN I, KUMAR K, et al. Potential biotechnological strategies for the cleanup of heavy metals and metalloids[J]. Frontiers in Plant Science, 2016, 7:303. doi:10.3389/fpls.2016.00303.
|
XIE P, HAO X, HERZBERG M, et al. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China[J]. Journal of Environmental Sciences-China, 2015, 27(1):179-187.
|
ROWLAND I, DAVIES M J, GRASSO P, et al. Metabolism of methylmercuric chloride by the gastro-intestinal flora of the rat[J]. Xenobiotica, 1978, 8(1):37-43.
|
LIEBERT C, WIREMAN J, SMITH T, et al. Phylogeny of mercury resistance (mer) operons of gram-negative bacteria isolated from the fecal flora of primates.[J]. Applied and Environmental Microbiology, 1997, 63(3):1066-1076.
|
ROTHENBERG S E, KEISER S, AJAMI N J, et al. The role of gut microbiota in fetal methylmercury exposure:Insights from a pilot study[J]. Toxicology Letters, 2016, 242:60-67.
|
ZHAI Q, WANG J, CEN S, et al. Modulation of the gut microbiota by a galactooligosaccharide protects against heavy metal lead accumulation in mice[J]. Food & Function, 2019, 10(6):3768-3781.
|
ZHOU G, YANG X, ZHENG F, et al. Arsenic transformation mediated by gut microbiota affects the fecundity of Caenorhabditis elegans[J]. Environmental Pollution, 2020, 260:113991. doi:10.1016/j.envpol.2020.113991.
|
RADISAVLJEVIC N, CIRSTEA M, FINLAY B B, et al. Bottoms up:The role of gut microbiota in brain health[J]. Environmental Microbiology, 2019, 21(9):3197-3211.
|
ZHAI Q, CEN S, JIANG J, et al. Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder:A pilot study of Chinese children[J]. Environmental Research, 2019, 171:501-509.
|
WANG J, HU W, YANG H, et al. Arsenic concentrations, diversity and co-occurrence patterns of bacterial and fungal communities in the feces of mice under sub-chronic arsenic exposure through food[J]. Environment International, 2020, 138:105600. doi:10.1016/j.envint.2020.105600.
|
MISAL S A, GAWAI K R. Azoreductase:A key player of xenobiotic metabolism[J]. Bioresources and Bioprocessing, 2018, 5(1):17. doi:10.1186/s40643-018-0206-8.
|
KOPPEL N, REKDAL V M, BALSKUS E P, et al. Chemical transformation of xenobiotics by the human gut microbiota[J]. Science, 2017, 356(6344):2770. doi:10.1126/science.aag2770.
|
PAN H, FENG J, HE G, et al. Evaluation of impact of exposure of Sudan azo dyes and their metabolites on human intestinal bacteria[J]. Anaerobe, 2012, 18(4):445-453.
|
KOREM T, ZEEVI D, SUEZ J, et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples[J]. Science, 2015, 349(6252):1101-1106.
|
ZHANG L, NICHOLS R G, PATTERSON A D, et al. The aryl hydrocarbon receptor as a moderator of host-microbiota communication[J]. Current Opinion in Toxicology, 2017, 2:30-35.
|
METIDJI A, OMENETTI S, CROTTA S, et al. The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity[J]. Immunity, 2018, 49(2):1542. doi:10.1016/j.immuni.2018.07.010.
|
NICHOLS R G, ZHANG J, CAI J, et al. Metatranscriptomic analysis of the mouse gut microbiome response to the persistent organic pollutant 2,3,7,8-Tetrachlorodibenzofuran[J]. Metabolites, 2020, 10(1):1. Doi:10.3390/metabo10010001.
|
LIU M, SONG S, HU C, et al. Dietary administration of probiotic Lactobacillus rhamnosus modulates the neurological toxicities of perfluorobutanesulfonate in zebrafish[J]. Environmental Pollution, 2020, 265:114832. doi:10.1016/j.envpol.2020.114832.
|
SCHMID R B, LEHMAN R M, BROZEL V S, et al. An indigenous gut bacterium, Enterococcus faecalis (Lactobacillales:Enterococcaceae), increases seed consumption by Harpalus pensylvanicus (Coleoptera:Carabidae)[J]. Florida Entomologist, 2014, 97(2):575-584.
|
ZHU D, ZHENG F, CHEN Q, et al. Exposure of a soil collembolan to Ag nanoparticles and AgNO3 disturbs its associated microbiota and lowers the incidence of antibiotic resistance genes in the gut[J]. Environmental Science & Technology, 2018, 52(21):12748-12756.
|
MA J, CHEN Q, OCONNOR P, et al. Does soil CuO nanoparticles pollution alter the gut microbiota and resistome of Enchytraeus crypticus[J]. Environmental Pollution, 2020, 256:113463. doi:10.1016/j.envpol.2019.113463
|
PATSIOU D, RIOCUBILLEDO C D, CATARINO A I, et al. Exposure to Pb-halide perovskite nanoparticles can deliver bioavailable Pb but does not alter endogenous gut microbiota in zebrafish[J]. Science of the Total Environment, 2020, 715:136941. doi:10.1016/j.scitotenv.2020.136941.
|
CHEN L, GUO Y, HU C, et al. Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A:Implications for host health in zebrafish[J]. Environmental Pollution, 2018, 234:307-317.
|
CATTò C, GARUGLIERI E, BORRUSO L, et al. Impacts of dietary silver nanoparticles and probiotic administration on the microbiota of an in-vitro gut model[J]. Environmental Pollution, 2019, 245:754-763.
|
JIN Y, XIA J, PAN Z, et al. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish[J]. Environmental Pollution, 2018, 235:322-329.
|
LU L, WAN Z, LUO T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice[J]. Science of the Total Environment, 2018, 631:449-458.
|
JIN Y, LU L, TU W, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice[J]. Science of the Total Environment, 2019, 649:308-317.
|
QIAO R, DENG Y, ZHANG S, et al. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish[J]. Chemosphere, 2019, 236:124334. doi:10.1016/j.chemosphere.2019.07.065
|