高效液相色谱-电感耦合等离子体质谱法测定水产品中砷形态的研究进展

乔艺飘, 张龙飞, 顾润润, 黄冬梅, 叶洪丽, 史永富. 高效液相色谱-电感耦合等离子体质谱法测定水产品中砷形态的研究进展[J]. 环境化学, 2020, (4): 1084-1097. doi: 10.7524/j.issn.0254-6108.2019122003
引用本文: 乔艺飘, 张龙飞, 顾润润, 黄冬梅, 叶洪丽, 史永富. 高效液相色谱-电感耦合等离子体质谱法测定水产品中砷形态的研究进展[J]. 环境化学, 2020, (4): 1084-1097. doi: 10.7524/j.issn.0254-6108.2019122003
QIAO Yipiao, ZHANG Longfei, GU Runrun, HUANG Dongmei, YE Hongli, SHI Yongfu. Determination of arsenic species in aquatic products by high performance liquid chromatography inductively coupled plasma mass spectrometry: A review[J]. Environmental Chemistry, 2020, (4): 1084-1097. doi: 10.7524/j.issn.0254-6108.2019122003
Citation: QIAO Yipiao, ZHANG Longfei, GU Runrun, HUANG Dongmei, YE Hongli, SHI Yongfu. Determination of arsenic species in aquatic products by high performance liquid chromatography inductively coupled plasma mass spectrometry: A review[J]. Environmental Chemistry, 2020, (4): 1084-1097. doi: 10.7524/j.issn.0254-6108.2019122003

高效液相色谱-电感耦合等离子体质谱法测定水产品中砷形态的研究进展

    通讯作者: 史永富, E-mail: xyzmn530@sina.com
  • 基金项目:

    中国水产科学研究院院级基本科研业务费专项(2018HY-ZD0602)和农业部公益性行业(农业)科研专项(201503108)资助.

Determination of arsenic species in aquatic products by high performance liquid chromatography inductively coupled plasma mass spectrometry: A review

    Corresponding author: SHI Yongfu, xyzmn530@sina.com
  • Fund Project: Supported by the Basic Scientific Research Operating Costs of Chinese Academy of Fishery Sciences (2018HY-ZD0602) and the Agricluture Industry Research Special Funds for Public welfare Projects(20153108).
  • 摘要: 水产品中的砷化合物存在形态多样且含量远高于陆地生物,砷的毒性取决于它的化学形态,因此对水产品中砷形态的分析具有重要意义.高效液相色谱(HPLC)与电感耦合等离子体质谱(ICP-MS)由于低检出限和宽线性范围的优点,被广泛应用于水产品中砷的形态分析.本文结合国内外使用HPLC/ICP-MS分析水产品(海藻、鱼类、甲壳类和贝类)中砷化合物的文献资料,总结了该仪器的重要工作参数和方法的分析验证性能,包括分离柱类型、流动相条件、线性方程和相关系数、检出限、定量限以及精密度等方面;同时也总结了各类水产品中砷的赋存形态和含量.本文可为进一步研究水产品中砷的迁移转化规律、食品质量安全评价与风险评估及相关法规的制定提供可靠技术参考.
  • 加载中
  • [1] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Arsenic, metals, fibres, and dusts[J]. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 2012, 100(Part C):11-465.
    [2] BISSEN M, FRIMMEL F H. Arsenic-A review. part Ⅰ:Occurrence, toxicity, speciation, mobility[J]. Acta Hydrochimica Et Hydrobiologica, 2003, 31(1):9-18.
    [3] CARUSO J A, KLAUE B, MICHALKE B, et al. Group assessment:Elemental speciation[J]. Ecotoxicology and Environmental Safety, 2003, 56(1):32-44.
    [4] VAHTER M. Mechanisms of arsenic biotransformation[J]. Toxicology, 2003, 181-182(181-182):211-217.
    [5] KENYON E M, HUGHES M F. A concise review of the toxicity and carcinogenicity of dimethylarsinic acid[J]. Toxicology, 2001, 160(1-3):227-236.
    [6] HSIEH Y J, JIANG S J. Application of HPLC-ICP-MS and HPLC-ESI-MS procedures for arsenic speciation in seaweeds[J]. Journal of Agricultural and Food Chemistry, 2012, 60(9):2083-2089.
    [7] FRANCESCONI‡ K A. Arsenic species in seafood:Origin and human health implications[J]. Pure & Applied Chemistry, 2010, 82(2):373-381.
    [8] KRISHNAKUMAR P K, QURBAN M A, STIBOLLER M, et al. Arsenic and arsenic species in shellfish and finfish from the western Arabian Gulf and consumer health risk assessment[J]. Science of the Total Environment, 2016, 566:1235-1244.
    [9] RAHMAN M A, HASEGAWA H, LIM R P. Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain[J]. Environmental Research, 2012, 116:118-135.
    [10] EDMONDS J S, SHIBATA Y, FRANCESCONI K A, et al. Arsenic lipids in the digestive gland of the western rock lobster Panulirus cygnus:an investigation by HPLC ICP-MS[J]. Sci. Total Environ, 1992, 122(3):321-335.
    [11] MCSHEEHY S, SZPUNAR J, MORABITO R, et al. The speciation of arsenic in biological tissues and the certification of reference materials for quality control[J]. Trac Trends in Analytical Chemistry, 2003, 22(4):191-209.
    [12] MCLEAN J A, ZHANG H, MONTASER A. A direct injection high-efficiency nebulizer for inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 1998, 70(5):1012-1020.
    [13] WANG Z, XU J, LIU Y, et al. Arsenic speciation of edible shrimp by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry(HPLC-ICP-MS):Method development and healtj assessment[J]. Analytical Letters, 2019, 52(14):2266-2282.
    [14] LEUFROY A, NOEL, DUFAILLY V, et al. Determination of seven arsenic species in seafood by ion exchange chromatography coupled to inductively coupled plasma-mass spectrometry following microwave assisted extraction:Method validation and occurrence data[J]. Talanta. 2011, 83(3):770-779.
    [15] KARTHIKEYAN S, HIRATA S, IYER C S P. Determination of arsenic species by microwave-assisted extraction followed by ion-pair chromatography-ICPMS:Analysis of reference materials and fish tissues[J]. International Journal of Environmental Analytical Chemistry, 2004, 84(8):573-582.
    [16] NOOKABKAEW S, RANGKADILOK N, MAHIDOL C, et al. Determination of arsenic species in rice from thailand and other asian countries using simple extraction and HPLC-ICP-MS Analysis[J]. Journal of Agricultural and Food Chemistry, 2013, 61(28):6991-6998.
    [17] WANGKARN S, PERGANTIS S A. High-speed separation of arsenic compounds using narrow-bore high-performance liquid chromatography on-line with inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2000, 15(6):627-633.
    [18] WANG Z, NADEAU L, SPARLING M, et al. Determination of arsenic species in fruit juice and fruit drink products using ion pair chromatography coupled to inductively coupled plasma mass spectrometry[J]. Food Analytical Methods, 2015, 8(1):173-179.
    [19] LLORENTE-MIRANDES T, CALDER N J, CENTRICH F, et al. A need for determination of arsenic species at low levels in cereal-based food and infant cereals. Validation of a method by IC-ICPMS[J]. Food Chemistry, 2014, 147:377-385.
    [20] JANKONG P, CHALHOUB C, KIENZL N, et al. Arsenic accumulation and speciation in freshwater fish living in arsenic-contaminated waters[J]. Environmental Chemistry, 2007, 4(1):11-17.
    [21] KIRBY J, MAHER W. Measurement of water-soluble arsenic species in freeze-dried marine animal tissues by microwave-assisted extraction and HPLC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(8):838-843.
    [22] EDMONDS J S, FRANCESCONI K A. Chapter 5.organoarsenic compounds in the marine environment[M]. Organoarsenic Compounds in the Marine Environment, Second Edition. 2003:195-222.
    [23] 龚倩,蔡友琼,马兵,等. 对贝类产品标准中重金属限量指标的探讨[J]. 海洋渔业, 2011, 33(2):226-233.

    GONG Q, CAI Y Q, MA B, et al. On heavy metal sanitation standards of bivalve molluscs[J]. Marine Fisheries, 2011, 33(2):226-233(in Chinese).

    [24] 朱文慧,步营,于玲,等. 国内外水产品中重金属限量标准研究[J]. 齐鲁渔业, 2010, 27(3):57-59.

    ZHU W H, BU Y, YU L, et al. Study on limit standards of heavy metals in aquatic products in china and other countries[J]. Shandong Fisheries, 2010, 27(3):57-59(in Chinese).

    [25] TAYLOR V F, JACKSON B P. Concentrations and speciation of arsenic in New England seaweed species harvested for food and agriculture[J]. Chemosphere, 2016, 163:6-13.
    [26] CIARDULLO S, AURELI F, RAGGI A, et al. Arsenic speciation in freshwater fish:Focus on extraction and mass balance[J]. Talanta, 2010, 81(1-2):213-221.
    [27] BRALATEI E, NEKROSIUTE K, RONAN J, et al. A field deployable method for a rapid screening analysis of inorganic arsenic in seaweed[J]. Microchimica Acta, 2017, 184(6):1701-1709.
    [28] LARSEN E H, ENGMAN J, SLOTH J J, et al. Determination of inorganic arsenic in white fish using microwave-assisted alkaline alcoholic sample dissolution and HPLC-ICP-MS[J]. Analytical & Bioanalytical Chemistry, 2005, 381(2):339-346.
    [29] KOMOROWICZ I, BARAłKIEWICZ D. Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry-Last decade review[J]. Talanta, 2011, 84(2):247-261.
    [30] MAHER W, KRIKOWA F, ELLWOOD M, et al. Overview of hyphenated techniques using an ICP-MS detector with an emphasis on extraction techniques for measurement of metalloids by HPLC-ICPMS[J]. Microchemical Journal, 2012, 105:15-31.
    [31] WROBEL K, WROBEL K, PARKER B, et al. Determination of As(Ⅲ), As(Ⅴ), monomethylarsonic acid, dimethylarsinic acid and arsenobetaine by HPLC-ICP-MS:Analysis of reference materials, fish tissues and urine[J]. Talanta, 2002, 58(5):899-907.
    [32] WOLLE M M, CONKLIN S D, WITTENBERG J. Matrix-induced transformation of arsenic species in seafoods[J]. Analytica Chimica Acta, 2019, 1060:53-63.
    [33] 陆奕娜,陈建伟,张林田,等. 高效液相色谱-电感耦合等离子体质谱同时测定虾类中6种砷形态[J]. 分析科学学报, 2016, 32(1):141-144.

    LU Y N, CHEN J W, ZHANG L T, et al. Simultaneous determination of six arsenic species in shrimps by HPLC-ICP-MS[J]. Journal of Analytical Science, 2016, 32(1):141-144(in Chinese).

    [34] TEROL A, MARCINKOWSKA M, ARDINI F, et al. Fast Determination of toxic arsenic species in food samples using narrow-bore high-performance liquid-chromatography inductively coupled plasma mass spectrometry[J]. Analytical Sciences, 2016, 32(8):911-915.
    [35] 陆奕娜,魏建华,许慨,等. 高效液相色谱-电感耦合等离子体质谱法同时测定海产品中9种砷形态化合物[J]. 理化检验(化学分册), 2017, 53(9

    ):1087-1093. LU Y N, WEI J H, XU K, et al. Simultaneous determination of nine arsenic species in marine products by HPLC-ICP-MS[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(9):1087-1093(in Chinese).

    [36] 李卫华,刘玉海. 阴/阳离子交换色谱-电感耦合等离子体质谱法分析鱼和贝类海产品砷的形态[J]. 分析化学, 2011, 39(12):1577-1581.

    LI W H, LIU Y H. Analysis of arsenic speciation in sea fish and shellfish by anion/cation exchange high performance chromatography coupled with inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2011, 39(12):1577-1581(in Chinese).

    [37] JEONG S, LEE H, KIM Y T, et al. Development of a simultaneous analytical method to determine arsenic speciation using HPLC-ICP-MS:Arsenate, arsenite, monomethylarsonic acid, dimethylarsinic acid, dimethyldithioarsinic acid, and dimethylmonothioarsinic acid[J]. Microchemical Journal, 2017, 134:295-300.
    [38] HIRATA S, TOSHIMITSU H. Determination of arsenic species and arsenosugars in marine samples by HPLC-ICP-MS[J]. Applied Organometallic Chemistry, 2007, 21(6):447-454.
    [39] RUTTENS A, BLANPAIN A C, TEMMERMAN L D, et al. Arsenic speciation in food in Belgium:Part 1:Fish, molluscs and crustaceans[J]. Journal of Geochemical Exploration, 2012, 121:55-61.
    [40] LI P, PAN Y, FANG Y, et al. Concentrations and health risks of inorganic arsenic and methylmercury in shellfish from typical coastal cities in China:A simultaneous analytical method study[J]. Food Chemistry, 2019, 278:587-592.
    [41] 吕超,刘丽萍,董慧茹,等. 高效液相色谱-电感耦合等离子体质谱联用技术测定水产类膳食中5种砷形态的方法研究[J]. 分析测试学报, 2010, 29(5):465-468.

    LV C, LIU L P, DONG H R, et al. Analysis of five arsenic speciations by high performance liquid chromatography and inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2010, 29(5):465-468(in Chinese).

    [42] 朱鸭梅,凌云,董耀,等. HPLC-ICP-MS联用技术测定紫菜中5种砷的形态[J]. 现代科学仪器, 2016(5):92-96. ZHU Y M, LING Y, DONG Y, et al. The determination of five arsenic speciations in porphyra by HPLC-ICP-MS[J]. Modern Scientific Instruments, 2016

    (5):92-96(in Chinese).

    [43] 李智明. HPLC-ICP-MS测定水产品中五种砷形态[J]. 科技创新与应用, 2016(30):43-44. LI Z M. Determination of five arsenic species in aquatic products by HPLC-ICP-MS[J]. Technology Innovation and Application, 2016

    , (30):43-44(in Chinese).

    [44] SCHMIDT L, FIGUEROA J L, SANTOS R F, et al. Arsenic speciation in seafood by LC-ICP-MS/MS:Method Development and influence of culinary treatment[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(8):1490-1499.
    [45] JIA Y, WANG L, LI S, et al. Species-specific bioaccumulation and correlated health risk of arsenic compounds in freshwater fish from a typical mine-impacted river[J]. Science of the Total Environment, 2018, 625:600-607.
    [46] MARSHALL G B, WEST T S. Determination of traces of calcium, magnesium, iron and nickel in aluminium salts by atomic-absorption spectrophotometry with a microwave-excited source and hollow-cathode lamps[J]. Talanta, 1967, 14(7):823-831.
    [47] GARCIA-SARTAL C, TAEBUNPAKUL S, STOKES E, et al. Two-dimensional HPLC coupled to ICP-MS and electrospray ionisation (ESI)-MS/MS for investigating the bioavailability in vitro of arsenic species from edible seaweed[J]. Analytical and Bioanalytical Chemistry, 2012, 402(10):3359-3369.
    [48] 杨芬,韦朝阳,刘金鑫. 砷形态分析的样品前处理技术研究进展[J]. 环境科学与技术, 2016, 39(10):79-86.

    YANG F, WEI C Y, LIU J X. A review on sample pre-treatment techniques of arsenic speciation analysis[J]. Environmental Science & Technology, 2016, 39(10):79-86(in Chinese).

    [49] 陆奕娜,卢金素,朱婷,等. 砷形态提取及分析方法研究进展[J]. 福建分析测试, 2017, 26(4):26-33.

    LU Y N, LU J S, ZHU T, et al. Research progress on extraction and analysis for arsenic speciation[J]. Fujian Analysis & Testing, 2017, 26(4):26-33(in Chinese).

    [50] MIYASHITA S, SHIMOYA M, KAMIDATE Y, et al. Rapid determination of arsenic species in freshwater organisms from the arsenic-rich Hayakawa River in Japan using HPLC-ICP-MS[J]. Chemosphere, 2009, 75(8):1065-1073.
    [51] NAM S H, CUI S, PARK M Y. Total arsenic and arsenic species in seaweed and seafood samples determined by ion chromatography coupled with inductively coupled end-on-plasma atomic emission spectrometry[J]. Bulletin of the Korean Chemical Society, 2016, 37(12):1920-1926.
    [52] KAROUNA-RENIER N K, SNYDER R A, ALLISON J G, et al. Accumulation of organic and inorganic contaminants in shellfish collected in estuarine waters near Pensacola, Florida:Contamination profiles and risks to human consumers[J]. Environmental Pollution, 2007, 145(2):474-488.
    [53] OLMEDO P, PLA A, HERN NDEZ A F, et al. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers[J]. Environment International, 2013, 59(3):63-72.
    [54] JIA Y, WANG L, MA L, et al. Speciation analysis of six arsenic species in marketed shellfish:Extraction optimization and health risk assessment[J]. Food Chemistry, 2018, 244:311-316.
    [55] LIU C W, LIANG C P, HUANG F M, et al. Assessing the human health risks from exposure of inorganic arsenic through oyster (Crassostrea gigas) consumption in Taiwan[J]. Science of the Total Environment, 2006, 361(1-3):57-66.
    [56] 高杨,曹煊,余晶晶,等. 高效液相色谱-电感耦合等离子体质谱联用技术测定干海产品中砷化学形态[J]. 分析化学, 2009, 37(12):1738-1742.

    GAO Y, CAO X, XU J J, et al. Determination of arsenic and its species in dry seafood by high performance liquid chromatography- inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2009, 37(12):1738-1742(in Chinese).

  • 加载中
计量
  • 文章访问数:  1673
  • HTML全文浏览数:  1673
  • PDF下载数:  66
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-20

高效液相色谱-电感耦合等离子体质谱法测定水产品中砷形态的研究进展

    通讯作者: 史永富, E-mail: xyzmn530@sina.com
  • 1. 上海海洋大学食品学院, 上海, 201306;
  • 2. 中国水产科学研究院东海水产研究所, 农业农村部水产品质量监督检验测试中心(上海), 上海, 200090
基金项目:

中国水产科学研究院院级基本科研业务费专项(2018HY-ZD0602)和农业部公益性行业(农业)科研专项(201503108)资助.

摘要: 水产品中的砷化合物存在形态多样且含量远高于陆地生物,砷的毒性取决于它的化学形态,因此对水产品中砷形态的分析具有重要意义.高效液相色谱(HPLC)与电感耦合等离子体质谱(ICP-MS)由于低检出限和宽线性范围的优点,被广泛应用于水产品中砷的形态分析.本文结合国内外使用HPLC/ICP-MS分析水产品(海藻、鱼类、甲壳类和贝类)中砷化合物的文献资料,总结了该仪器的重要工作参数和方法的分析验证性能,包括分离柱类型、流动相条件、线性方程和相关系数、检出限、定量限以及精密度等方面;同时也总结了各类水产品中砷的赋存形态和含量.本文可为进一步研究水产品中砷的迁移转化规律、食品质量安全评价与风险评估及相关法规的制定提供可靠技术参考.

English Abstract

参考文献 (56)

目录

/

返回文章
返回