生物炭载硫化铁对2,4-二氯苯氧乙酸的催化氧化降解

徐奕莎, 朱晓晓, 李建法, 王悦, 吕金红. 生物炭载硫化铁对2,4-二氯苯氧乙酸的催化氧化降解[J]. 环境化学, 2020, (3): 662-669. doi: 10.7524/j.issn.0254-6108.2019092801
引用本文: 徐奕莎, 朱晓晓, 李建法, 王悦, 吕金红. 生物炭载硫化铁对2,4-二氯苯氧乙酸的催化氧化降解[J]. 环境化学, 2020, (3): 662-669. doi: 10.7524/j.issn.0254-6108.2019092801
XU Yisha, ZHU Xiaoxiao, LI Jianfa, WANG Yue, LYU Jinhong. Oxidative degradation of 2,4-dichlorophenoxyacetic acid catalyzed by the biochar supported iron sulfide[J]. Environmental Chemistry, 2020, (3): 662-669. doi: 10.7524/j.issn.0254-6108.2019092801
Citation: XU Yisha, ZHU Xiaoxiao, LI Jianfa, WANG Yue, LYU Jinhong. Oxidative degradation of 2,4-dichlorophenoxyacetic acid catalyzed by the biochar supported iron sulfide[J]. Environmental Chemistry, 2020, (3): 662-669. doi: 10.7524/j.issn.0254-6108.2019092801

生物炭载硫化铁对2,4-二氯苯氧乙酸的催化氧化降解

    通讯作者: 李建法, E-mail: ljf@usx.edu.cn
  • 基金项目:

    国家自然科学基金(21777103)资助.

Oxidative degradation of 2,4-dichlorophenoxyacetic acid catalyzed by the biochar supported iron sulfide

    Corresponding author: LI Jianfa, ljf@usx.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21777103).
  • 摘要: 以木质生物炭为载体制备了负载型硫化铁(FeSx/BC),采用扫描电镜/能量色散X射线光谱(SEM/EDX)、X射线粉末衍射(XRD)和X射线光电子能谱(XPS)对其结构进行了表征分析.然后将其用于催化除草剂2,4-二氯苯氧乙酸(2,4-D)的类Fenton氧化降解,并与市售硫化亚铁(c-FeS)进行对比.结果表明,生物炭可以提高硫化铁分散性,炭载催化剂中的Fe主要以Fe3S4形式存在.与c-FeS相比,采用FeSx/BC催化降解2,4-D的反应速率常数(kobs)提高了约20倍.降解反应速率随催化剂、H2O2用量增加而提高,但是随初始pH(2.0-9.0)上升而下降.机理研究表明,生物炭作为电子穿梭体有助于提高·OH的生成量,促进2,4-D降解中间产物转化、并使脱氯反应更完全.
  • 加载中
  • [1] 孙红文, 吕俊岗, 翟洪艳, 等. Fenton法与光Fenton法降解2,4-D的研究[J]. 环境化学,2005,24(4):365-369.

    SUN H W, LÜ J G, ZHAI H Y, et al. Study on degradation of 2,4-D by Fenton and photo-Fenton reaction[J]. Environmental Chemistry, 2005, 24(4):365-369(in Chinese).

    [2] HE J, YANG X, MEN B, et al. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials:A review[J]. Journal of Environmental Science, 2016, 39:97-109.
    [3] 冯勇, 吴德礼, 马鲁铭. 铁氧化物催化类Fenton反应[J]. 化学进展, 2013, 25(7):1219-1228.

    FENG Y, WU D L, MA M L. Iron oxide catalyzed Fenton-like reaction[J]. Progress in Chemistry, 2013, 25(7):1219-1228(in Chinese).

    [4] 冯勇, 吴德礼, 马鲁铭. 黄铁矿催化类Fenton反应处理阳离子红X-GRL废水[J]. 中国环境科学, 2012, 32(6):1011-1017.

    FENG Y, WU D L, MA M L. Treatment of Cationic Red X-GRL wastewater by pyrite catalyzed Fenton-like reaction[J]. China Environmental Science, 2012, 32(6):1011-1017(in Chinese).

    [5] CHEN H, ZHANG Z, FENG M, et al. Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite)[J]. Chemical Engineering Journal, 2017, 313:498-507.
    [6] ZHAO L, CHEN Y, LIU Y, et al. Enhanced degradation of chloramphenicol at alkaline conditions by S(-Ⅱ) assisted heterogeneous Fenton-like reactions using pyrite[J]. Chemosphere, 2017, 188:557-566.
    [7] 陈再明, 陈宝梁, 周丹丹. 水稻秸秆生物碳的结构特征及其对有机污染物的吸附性能[J]. 环境科学学报, 2013, 33(1):9-19.

    CHEN Z M, CHEN B L, ZHOU D D. Composition and sorption properties of rice-straw derived biochars[J]. Acta Scientiae Circumstantiae, 2013, 33(1):9-19(in Chinese).

    [8] 王菲, 孙红文. 生物炭对极性与非极性有机污染物的吸附机理[J]. 环境化学, 2016, 35(6):1134-1141.

    WANG F, SUN H W. Sorption mechanisms of polar and apolar organic contaminants onto biochars[J]. 2016, 35(6):1134-1141(in Chinese).

    [9] ZHU X, LI C, LI J, et al. Thermal treatment of biochar in the air/nitrogen atmosphere for developed mesoporosity and enhanced adsorption to tetracycline[J]. Bioresource Technology, 2018, 263:475-482.
    [10] KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe (Ⅲ) minerals[J]. Environmental Science & Technology Letter, 2014, 1:339-344.
    [11] FANG G, GAO J, LIU C, et al. Key role of persistent free radicals in hydrogen peroxide activation by biochar:Implications to organic contaminant degradation[J]. Environmental Science & Technology, 2014, 48:1902-1910.
    [12] ZHANG Y, XU X, CAO L, et al. Characterization and quantification of electron donating capacity and its structure dependence in biochar derived from three waste biomasses[J]. Chemosphere, 2018, 211:1073-1081.
    [13] YAN J, HAN L, GAO W, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene[J]. Bioresource Technology, 2015, 175:269-274.
    [14] OUYANG D, YAN J, QIAN L, et al. Degradation of 1, 4-dioxane by biochar supported nano magnetite particles activating persulfate[J]. Chemosphere, 2017, 184:609-617.
    [15] 于晓丹, 林鑫辰, 冯威, 等. Fe3O4/TiO2@生物碳骨架复合材料的一步法制备及UV-Fenton催化性能[J]. 高等学校化学学报, 2018,39:154-160. YU X D, LIN X C, FENG W, et al. One-step preparation and UV-Fenton properties of Fe3

    O4/TiO2@bio-carbon composites[J]. Chemical Journal of Chinese Universities, 2018, 39:154-160(in Chinese).

    [16] 周奥, 曹新强, 顾彦, 等. 以生物炭为内核的BC@BiOBr催化剂的制备及可见光光催化性能[J]. 环境化学, 2019,38(2):235-242.

    ZHOU A, CAO X Q, GU Y, et al. Preparation of BC@BiOBr catalyst with biochar as core and its visible light photocatalytic performance[J]. Environmental Chemistry, 2019, 38(2):235-242(in Chinese).

    [17] CHEN H, ZHANG Z, YANG Z, et al. Heterogeneous Fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid in water with FeS[J]. Chemical Engineering Journal, 2015, 273:481-489.
    [18] TONG M, YUAN S, MA S, et al. Production of abundant hydroxyl radicals from oxygenation of subsurface sediments[J]. Environmental Science & Technology, 2016, 50(1):214-221.
    [19] CHOE Y J, BYUN J Y, KIM S H, et al. Fe3S4/Fe7S8-promoted degradation of phenol via heterogeneous, catalytic H2O2 scission mediated by S-modified surface Fe2+ species[J]. Applied Catalysis B:Environmental, 2018, 233:272-280.
    [20] LÜ Y, LI J, LI Y, et al. The roles of pyrite for enhancing reductive removal of nitrobenzene by zero-valent iron[J]. Applied Catalysis B:Environmental, 2019, 242:9-18.
    [21] FANG G, ZHU C, DIONYSIOU D D, et al. Mechanism of hydroxyl radical generation from biochar suspensions:Implications to diethyl phthalate degradation[J]. Bioresource Technology, 2015, 176:210-217.
    [22] QIN Y, ZHANG L, AN T. Hydrothermal carbon-mediated Fenton-like reaction mechanism in the degradation of alachlor:Direct electron transfer from hydrothermal carbon to Fe (Ⅲ)[J]. ACS Applied Material and Interface, 2017, 9:17115-17124.
    [23] ZHANG Y, ZHANG K, DAI C, et al. An enhanced Fenton reaction catalyzed by natural heterogeneous pyrite for nitrobenzene degradation in an aqueous solution[J]. Chemical Engineering Journal, 2014, 244:438-445.
    [24] LEE H, PARK S H, PARK Y K, et al. Photocatalytic reactions of 2, 4-dichlorophenoxyacetic acid using a microwave-assisted photocatalysis system[J]. Chemical Engineering Journal, 2015, 278:259-264.
    [25] AZIZ K H H, MIESSNER H, MUELLER S, et al. Comparative study on 2, 4-dichlorophenoxyacetic acid and 2, 4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor[J]. Journal of Hazardous Materials, 2018, 343:107-115.
    [26] 黄锦铌, 李任超, 金晓英, 等. 有机膨润土负载纳米铁类Fenton法去除水中2,4-二氯酚[J]. 福建师大学报(自然科学版),2015,(3):59

    -64. HUANG J N, LI R C, JIN X Y, et al. Fenton-like oxidation of 2,4-DCP in aqueous solution using organobentonite loaded nZVI[J]. Journal of Fujian Normal University (Natural Science Edition), 2015, (3):59-64(in Chinese).

    [27] LI R, GAO Y, JIN X, et al. Fenton-like oxidation of 2, 4-DCP in aqueous solution using iron-based nanoparticles as the heterogeneous catalyst[J]. Journal of Colloids and Interface Science, 2015, 438:87-93.
    [28] ZHU X, LI J, XIE B, et al. Accelerating effects of biochar for pyrite-catalyzed Fenton-like oxidation of herbicide 2,4-D[J]. Chemical Engineering Journal, 2019, DOI:10.1016/j.cej.2019.123605.
  • 加载中
计量
  • 文章访问数:  2063
  • HTML全文浏览数:  2063
  • PDF下载数:  79
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-28

生物炭载硫化铁对2,4-二氯苯氧乙酸的催化氧化降解

    通讯作者: 李建法, E-mail: ljf@usx.edu.cn
  • 绍兴文理学院化学系, 绍兴, 312000
基金项目:

国家自然科学基金(21777103)资助.

摘要: 以木质生物炭为载体制备了负载型硫化铁(FeSx/BC),采用扫描电镜/能量色散X射线光谱(SEM/EDX)、X射线粉末衍射(XRD)和X射线光电子能谱(XPS)对其结构进行了表征分析.然后将其用于催化除草剂2,4-二氯苯氧乙酸(2,4-D)的类Fenton氧化降解,并与市售硫化亚铁(c-FeS)进行对比.结果表明,生物炭可以提高硫化铁分散性,炭载催化剂中的Fe主要以Fe3S4形式存在.与c-FeS相比,采用FeSx/BC催化降解2,4-D的反应速率常数(kobs)提高了约20倍.降解反应速率随催化剂、H2O2用量增加而提高,但是随初始pH(2.0-9.0)上升而下降.机理研究表明,生物炭作为电子穿梭体有助于提高·OH的生成量,促进2,4-D降解中间产物转化、并使脱氯反应更完全.

English Abstract

参考文献 (28)

目录

/

返回文章
返回