制备方法对CoxZr1-xO2催化剂结构和氧化甲苯性能的影响

孙晓, 高子程, 刘晶, 夏云生, 邓积光. 制备方法对CoxZr1-xO2催化剂结构和氧化甲苯性能的影响[J]. 环境化学, 2020, (3): 653-661. doi: 10.7524/j.issn.0254-6108.2019091903
引用本文: 孙晓, 高子程, 刘晶, 夏云生, 邓积光. 制备方法对CoxZr1-xO2催化剂结构和氧化甲苯性能的影响[J]. 环境化学, 2020, (3): 653-661. doi: 10.7524/j.issn.0254-6108.2019091903
SUN Xiao, GAO Zicheng, LIU Jing, XIA Yunsheng, DENG Jiguang. Effects of preparation methods on the structure and oxidation properties of CoxZr1-xO2 catalyst[J]. Environmental Chemistry, 2020, (3): 653-661. doi: 10.7524/j.issn.0254-6108.2019091903
Citation: SUN Xiao, GAO Zicheng, LIU Jing, XIA Yunsheng, DENG Jiguang. Effects of preparation methods on the structure and oxidation properties of CoxZr1-xO2 catalyst[J]. Environmental Chemistry, 2020, (3): 653-661. doi: 10.7524/j.issn.0254-6108.2019091903

制备方法对CoxZr1-xO2催化剂结构和氧化甲苯性能的影响

    通讯作者: 夏云生, E-mail: xiayunshengs@126.com
  • 基金项目:

    国家自然科学基金(21676028)和辽宁省自然科学基金(2019-ZD-0506)资助.

Effects of preparation methods on the structure and oxidation properties of CoxZr1-xO2 catalyst

    Corresponding author: XIA Yunsheng, xiayunshengs@126.com
  • Fund Project: Supported by the National Natural Science Foundation of China(21676028) and the Natural Science Foundation of Liaoning Province (2019-ZD-0506).
  • 摘要: 采用沉淀法、水热法、热分解法和浸渍法制备了CoxZr1-xO2催化剂,考察了制备方法对其结构及甲苯氧化性能的影响.通过TG、XRD、SEM、EDS和BET等方法表征了催化剂物化性质.结果表明,水热法制备的催化剂上钴物种和锆物种分散性好、颗粒均匀呈球形、比表面积大可达82.3 m2·g-1、孔结构发达,从而具有更好的催化氧化甲苯的性能,在空速20000 mL·(g·h)-1,浓度为0.1%时完全氧化甲苯的转化温度低至260℃.
  • 加载中
  • [1] KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation of volatile organic compounds (VOCs)-A review[J]. Atmospheric Environment, 2016, 140:117-134.
    [2] 陈颖, 李丽娜, 杨常青, 等. 我国VOC类有毒空气污染物优先控制对策探讨[J]. 环境科学, 2011, 32(12):3469-3475.

    CHEN Y, LI L N, YANG C Q, et al. Countermeasures for priority control of toxic VOC pollution[J]. Environmental Science, 2011, 32(12):3469-3475(in Chinese).

    [3] 许伟, 刘军利, 孙康. 活性炭吸附法在挥发性有机物治理中的应用研究进展[J]. 化工进展, 2016, 35(4):1223-1229.

    XU W, LIU J L, SUN K. Application progresses in the treatment of volatile organic compounds by adsorption on activated carbon[J]. Chemical Industry and Engineering Progress, 2016, 35(4):1223-1229(in Chinese).

    [4] 梁文俊, 郭书清, 武红梅, 等. 非热等离子体协同Mn-Ce/La/γ-Al2O3催化剂去除甲苯[J]. 化工学报, 2017, 68(7):2755-2762.

    LIANG W J, GUO S Q, WU H M, et al. Removal of toluene using non-thermal plasma coupled with Mn-Ce/La/γ-Al2O3 catalysts[J]. The Journal of Chemical Industry and Engineering, 2017, 68(7):2755-2762(in Chinese).

    [5] 赵鹏, 刘杰民, 伊芹, 等. 异味污染评价与治理研究进展[J]. 环境化学, 2011, 30(1):310-325.

    ZHAO P, LIU J M, YI Q, et al. Advance on the study of odor assessment and treatment[J]. Environmental Chemistry, 2011, 30(1):310-325(in Chinese).

    [6] 彭雨程, 王恒, 冯俊小, 等. 催化燃烧技术处理VOCs的研究进展[J]. 环境与可持续发展, 2015, 40(3):97-100.

    PENG Y C, WANG H, FENG J X, et al. Latest researches of catalytic combustion of removing VOCs[J]. Environment and Sustainable Development, 2015, 40(3):97-100(in Chinese).

    [7] HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds:A review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7):4471-4568.
    [8] 户英杰, 王志强, 程星星, 等. 燃烧处理挥发性有机污染物的研究进展[J]. 化工进展, 2018, 37(1):319-329.

    HU Y J, WANG Z Q, CHENG X X, et al. Recent progress in the removal of volatile organic compounds by combustion[J]. Chemical Industry and Engineering Progress, 2018, 37(1):319-329(in Chinese).

    [9] 张长斌, 贺泓, 王莲,等. 负载型贵金属催化剂用于室温催化氧化甲醛和室内空气净化[J]. 科学通报, 2009, 54(3):278-286.

    ZHANG C B, HE H, WANG L, et al. Review of noble metal catalysts for the oxidation of formaldehyde and air purification in indoor environment at room temperature[J]. Chinese Science Bulletin, 2009, 54(3):278-286(in Chinese).

    [10] GUO Y, GAO Y, LI X, et al. Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2[J]. Chemical Engineering Journal, 2019, 362:41-52.
    [11] 邓积光, 何胜男, 谢少华, 等. 用于消除挥发性有机物的有序多孔金属氧化物催化剂的研究进展[J]. 高等学校化学学报, 2014, 35(6):1119-1129.

    DENG J G, HE S N, XIE S H, et al. Research advancements of ordered porous metal oxide catalysts for the oxidative removal of volatile organic compounds[J]. Chemical Journal of Chinese Universities, 2014, 35(6):1119-1129(in Chinese).

    [12] DU J, QU Z, DONG C, et al. Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach[J]. Applied Surface Science, 2018, 433:1025-1035.
    [13] PIUMETTI M, BENSAID S, ANDANA T, et al. Cerium-copper oxides prepared by solution combustion synthesis for total oxidation reactions:from powder catalysts to structured reactors[J]. Applied Catalysis B:Environmental, 2017, 205:455-468.
    [14] YI H, YANG Z, TANG X, et al. Novel synthesis of MeOx (Ni, Cu, La)@Nano-Co3O4 from combination of complexation and impregnation in ultrasonic intervention for low temperature oxidation of toluene under microwave radiation[J]. Ultrasonics Sonochemistry, 2018, 40:543-551.
    [15] DENG Q F, REN T Z, AGULA B, et al. Mesoporous CexZr1-xO2 solid solutions supported CuO nanocatalysts for toluene total oxidation[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5):3303-3312.
    [16] LIOTTA L F, WU H, PANTALEO G, et al. Co3O4 nanocrystals and Co3O4-MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures:A review[J]. Catalysis Science & Technology, 2013, 3(12):3085-3102.
    [17] LI D, WU X, CHEN Y. Synthesis of hierarchical hollow MnO2 microspheres and potential application in abatement of VOCs[J]. The Journal of Physical Chemistry C, 2013, 117(21):11040-11046.
    [18] WANG F, DAI H, DENG J, et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies:Highly effective catalysts for the removal of toluene[J]. Environmental Science & Technology, 2012, 46(7):4034-4041.
    [19] TANG W, WU X, LI S, et al. Co-nanocasting synthesis of mesoporous Cu-Mn composite oxides and their promoted catalytic activities for gaseous benzene removal[J]. Applied Catalysis B:Environmental, 2015, 162:110-121.
    [20] SHI J. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts[J]. Chemical Reviews, 2012, 113(3):2139-2181.
    [21] LI X, LI X, ZENG X, et al. Correlation between the physicochemical properties and catalytic performances of micro/mesoporous CoCeOx mixed oxides for propane combustion[J]. Applied Catalysis A:General, 2019, 572:61-70.
    [22] XIAO T, JI S, WANG H, et al. Methane combustion over supported cobalt catalysts[J]. Journal of Molecular Catalysis A:Chemical, 2001, 175(1-2):111-123.
    [23] WYRWALSKI F, LAMONIER J F, PEREZ-ZURITA M J, et al. Influence of the ethylenediamine addition on the activity, dispersion and reducibility of cobalt oxide catalysts supported over ZrO2 for complete VOC oxidation[J]. Catalysis Letters, 2006, 108(1-2):87-95.
    [24] WYRWALSKI F, LAMONIER J F, SIFFERT S, et al. Modified Co3O4/ZrO2 catalysts for VOC emissions abatement[J]. Catalysis Today, 2007, 119(1-4):332-337.
    [25] 邵建军, 朱锡, 申文杰. Co3O4/CeO2的氧化还原性能及反应条件对其CO氧化活性的影响[J]. 燃料化学学报, 2012, 40(1):75-79.

    SHAO J J, ZHU X, SHEN W J. Redox property of Co3O4/CeO2 and the effect of reaction conditions on its performance in CO oxidation[J]. Journal of Fuel Chemistry and Technology, 2012, 40(1):75-79(in Chinese).

    [26] LI W B, CHU W B, ZHUANG M, et al. Catalytic oxidation of toluene on Mn-containing mixed oxides prepared in reverse microemulsions[J]. Catalysis Today, 2004, 93:205-209.
    [27] PERKAS N, AMIRIAN G, ZHONG Z, et al. Methanation of carbon dioxide on Ni catalysts on mesoporous ZrO2 doped with rare earth oxides[J]. Catalysis Letters, 2009, 130:455-462.
    [28] RIVAS B, LÓPEZ-FONSECA R, SAMPEDRO C, et al. Catalytic behaviour of thermally aged Ce/Zr mixed oxides for the purification of chlorinated VOC-containing gas streams[J]. Applied Catalysis B:Environmental, 2009, 90(3-4):545-555.
    [29] 杨志强, 毛东森, 郭强胜, 等. 制备方法对CuO/CeO2-ZrO2催化CO低温氧化活性的影响[J]. 物理化学学报, 2010, 26(12):3278-3284.

    YANG Z Q, MAO D S, GUO Q S, et al. Effect of preparation method on the activity of CuO/CeO2-ZrO2 catalysts for low temperature CO oxidation[J]. Acta Physico-Chimica Sinica, 2010, 26(12):3278-3284(in Chinese).

    [30] LI Z, WU J H, YU J Q, et al. Effect of incorporation manner of Zr on the Co/SBA-15 catalyst for the Fischer-Tropsch synthesis[J]. Journal of Molecular Catalysis A:Chemical, 2016, 424:384-392.
    [31] 顾欧昀, 廖永涛, 陈锐杰, 等. 铜锰复合氧化物催化剂上甲苯的催化燃烧[J]. 化工学报, 2016, 67(7):2832-2840.

    GU O Y, LIAO Y T, CHEN R J, et al. Catalytic combustion of toluene over Cu-Mn mixed oxide catalyst[J]. Journal of Chemical Industry and Engineering, 2016, 67(7):2832-2840(in Chinese).

    [32] YAN Q, LI X, ZHAO Q, et al. Shape-controlled fabrication of the porous Co3O4 nanoflower clusters for efficient catalytic oxidation of gaseous toluene[J]. Journal of Hazardous Materials, 2012, 209:385-391.
    [33] ZHAO C C, HAO Q L, ZHANG Q, et al. Catalytic self-sustained combustion of toluene and reaction pathway over CuxMn1-xCe0.75Zr0.25/TiO2 catalysts[J]. Applied Catalysis A:General, 2019, 569:66-74.
    [34] FENG X Y, GUO J X, WEN X R, et al. Enhancing performance of Co/CeO2 catalyst by Sr doping for catalytic combustion of toluene[J]. Applied Surface Science, 2018, 445:145-153.
    [35] KONDRATOWICZ T, DROZDEK M, ROKICIN'SKA A, et al. Novel CuO-containing catalysts based on ZrO2 hollow spheres for total oxidation of toluene[J]. Microporous and Mesoporous Materials, 2019, 279:446-455.
    [36] HOU Z Y, FENG J, LIN T, et al. The performance of manganese-based catalysts with Ce0.65Zr0.35O2 as support for catalytic oxidation of toluene[J]. Applied Surface Science, 2018, 434:82-90.
    [37] CHANG T, SHEN Z, HUANG Y, et al. Post-plasma-catalytic removal of toluene using MnO2-Co3O4 catalysts and their synergistic mechanism[J]. Chemical Engineering Journal, 2018, 348:15-25.
  • 加载中
计量
  • 文章访问数:  1770
  • HTML全文浏览数:  1770
  • PDF下载数:  31
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-19

制备方法对CoxZr1-xO2催化剂结构和氧化甲苯性能的影响

    通讯作者: 夏云生, E-mail: xiayunshengs@126.com
  • 1. 渤海大学化学化工学院, 锦州, 121013;
  • 2. 北京工业大学环境与能源工程学院, 北京, 100124
基金项目:

国家自然科学基金(21676028)和辽宁省自然科学基金(2019-ZD-0506)资助.

摘要: 采用沉淀法、水热法、热分解法和浸渍法制备了CoxZr1-xO2催化剂,考察了制备方法对其结构及甲苯氧化性能的影响.通过TG、XRD、SEM、EDS和BET等方法表征了催化剂物化性质.结果表明,水热法制备的催化剂上钴物种和锆物种分散性好、颗粒均匀呈球形、比表面积大可达82.3 m2·g-1、孔结构发达,从而具有更好的催化氧化甲苯的性能,在空速20000 mL·(g·h)-1,浓度为0.1%时完全氧化甲苯的转化温度低至260℃.

English Abstract

参考文献 (37)

目录

/

返回文章
返回