东平湖表层沉积物中砷赋存特征及风险评价
Arsenic speciation characteristics and risk assessment of surface sediment in Dongping Lake
-
摘要: 为了解东平湖表层沉积物中砷的形态赋存特征及其生态环境风险,采用Tessier修正连续提取法对东平湖表层沉积物样品中砷的总量及形态赋存特征进行了分析,并运用风险评估指数法和沉积物重金属质量基准法对其环境风险进行了初步评价.结果表明,东平湖表层沉积物中总砷含量范围为8.59-22.76 mg·kg-1,均值为(15.69±2.64)mg·kg-1,是山东省土壤背景值的1.68倍,黄河干流沉积物背景值的2.09倍;沉积物各形态砷平均含量表现为:残渣态(11.90 mg·kg-1) > 腐殖酸结合态(1.84 mg·kg-1) > 铁锰氧化态(1.13 mg·kg-1) > 碳酸盐结合态(0.34 mg·kg-1) > 强有机质结合态(0.32 mg·kg-1) > 离子交换态(0.12 mg·kg-1) > 水溶态(0.04 mg·kg-1),沉积物中的砷主要以残渣态存在,其中生物可利用态砷占总砷的平均比例为24.2%.东平湖表层沉积物砷总体表现为低生态风险;73.3%的采样点砷含量处于可能效应水平(PEL)和临界效应水平(TEL)之间,26.7%的采样点高于可能效应水平(PEL).Abstract: In order to understand the chemical speciation and the ecological environmental risk of arsenic (As) in the sediment of Dongping Lake, the chemical forms of As in surface sediment samples collected around Dongping Lake was analyzed by using the Tessier seven-step sequential extraction procedure. The environmental risk of As was evaluated by the methods of risk assessment code (RAC) and sediment quality guidelines(SQGs).The results showed that total As concentrations in the surface sediment ranged from 8.59 to 22.76 mg·kg-1, with an average of (15.69±2.64) mg·kg-1, and the average concentration of As was about 1.68 times of the soil background value of Shandong Province and 2.09 times of the sediment background value from the main stream of the Yellow River. In terms of As speciation, As mainly existed in residual fraction, and the average concentrations of the seven forms followed the sequence of the residual fraction (11.90 mg·kg-1) > the humic acid fraction (1.84 mg·kg-1) > the Fe-Mn oxide fraction (1.13 mg·kg-1) > the carbonate fraction (0.34 mg·kg-1) > the strong organic matter fraction (0.32 mg·kg-1) > the ion-exchange fraction (0.12 mg·kg-1) > the water-soluble fraction (0.04 mg·kg-1). In addition, the average percentage of bioavailable As which was calculated as the sum of the concentrations of the first six fractions except the residual fraction was 24.2%. The assessment results of RAC suggested that As in the sediment of Dongping Lake posed low ecological risk, while according to the results of SQGs, As concentrations in 73.7% sediment samples were in the range of the probable effects level (PEL) and the threshold effect level (TEL) and in 26.7% samples exceeded the PEL.
-
Key words:
- As /
- speciation /
- surface sediment
-
[1] 张大文, 罗林广, 张莉, 等. 鄱阳湖表层沉积物中砷及重金属赋存形态及其潜在生态风险[J]. 长江流域资源与环境, 2014, 23(8):1132-1138. ZHANG D W, LUO L G, ZHANG L, et al. Speciation and potential ecological risk assessment of As and heavy metals in surface sediments of Poyang Lake[J]. Resources and Environment in Yangtze Basin, 2014, 23(8):1132-1138(in Chinese).
[2] 刘碧君, 吴丰昌, 邓秋静, 等. 锡矿山矿区和贵阳市人发中锑、砷和汞的污染特征[J]. 环境科学, 2009, 30(3):907-912. LIU B J, WU F C, DENG Q J, et al. Pollution characteristics of antimony, arsenic and mercury in human hair at Xikuangshan Antimony Mining Area and Guiyang City, China[J]. Environmental Science, 2009, 30(3):907-912(in Chinese).
[3] JAIN C K, ALI I. Arsenic:occurrence, toxicity and speciation techniques[J]. Water Research, 2000, 34(17):4304-4312. [4] 张玉玺, 向小平, 张英, 等. 云南阳宗海砷的分布与来源[J]. 环境科学, 2012, 33(11):3768-3777. ZHANG Y X, XIANG X P, ZHANG Y, et al. Distribution and sources of arsenic in Yangzonghai Lake[J]. Environmental Science, 2012, 33(11):3768-3777(in Chinese).
[5] 伍恒赟, 罗勇, 张起明, 等. 鄱阳湖沉积物重金属空间分布及潜在生态风险评价[J]. 中国环境监测, 2014, 30(6):114-119. WU H Y, LUO Y, ZHANG Q M, et al. Spatial distribution and potential ecological risk assessment of heavy metals in sediments of Poyang Lake[J]. Environmental Monitoring in China, 2014, 30(6):114-119(in Chinese).
[6] 李世玉, 刘彬, 杨常亮, 等. 上覆水pH值和总磷浓度对含铁盐的高砷沉积物中砷迁移转化的影响[J]. 湖泊科学, 2015, 27(6):1101-1106. LI S Y, LIU B, YANG C L, et al. Effect of pH and total phosphorus concentration of overlying water on arsenic mobilization in the sediments containing high arsenic and iron salts[J]. Journal of Lake Sciences, 2015, 27(6):1101-1106(in Chinese).
[7] CHAPMAN P M,WANG F Y, ADAMS W. Appropriate applications of sediment quality values for metals and metalloids[J]. Environmental Science & Technology, 1999, 33(22):3937-3941. [8] 车霏霏, 甄卓, 王大鹏, 等. 太湖不同营养水平湖区表层沉积物的砷分布特征及其生态风险[J]. 环境科学学报, 2017, 37(5):1623-1631. CHE F F, ZHEN Z, WANG D P, et al. Spatial distributions and ecological risks of arsenic in the surface sediment from different eutroph regions of Lake Taihu[J]. Acta Scientiae Circumstantiae, 2017, 37(5):1623-1631(in Chinese).
[9] 李滨, 王健, 李德亮, 等. 洞庭湖主要河口区表层沉积物与河蚬中砷的污染特征及风险评价[J]. 湖泊科学, 2019, 31(3):667-676. LI B, WANG J, LI D L, et al. Characteristics and risk assessment of arsenic contamination from surface sediments and clams(Corbicula fluminea) in the main estuaries of Lake Dongting[J]. Journal of Lake Sciences, 2019, 31(3):667-676(in Chinese).
[10] WANG Y, YANG L, KONG L, et al. Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China[J]. Catena, 2015, 125(2):200-205. [11] 张菊, 邓焕广, 陈诗越, 等. 东平湖水源地水环境健康风险初步评价[J]. 安全与环境学报, 2011, 11(6):111-115. ZHANG J, DENG H G, CHEN S Y, et al. Eco-environmental health risk assessment of Dongping Lake water-resources[J]. Journal of Safety and Environment, 2011, 11(6):111-115(in Chinese).
[12] 殷山红, 张智博, 肖燕, 等. 东平湖菹草-上覆水-沉积物系统中汞、砷的赋存特征[J]. 环境化学, 2019, 38(3):635-643. YIN S H, ZHANG Z B, XIAO Y, et al. Distribution characteristic of mercury and arsenic in the Potamogeton crispus-overlying water-sediment system of Dongping Lake[J]. Environmental Chemistry, 2019, 38(3):635-643(in Chinese).
[13] 杨田. 东平湖底泥重金属分布特征及生态风险评价[D]. 泰安:山东农业大学,2015. YANG T. Distribution characteristics and ecological risk assessment of heavy metals in sediment of Dongping Lake[D]. Taian:Shandong Agricultural University, 2015(in Chinese). [14] 张菊, 何振芳, 董杰, 等. 东平湖表层沉积物重金属的空间分布及污染评价[J]. 生态环境学报, 2016, 25(10):1699-1706. ZHANG J, HE Z F, DONG J, et al. Spatial distribution and pollution assessment of heavy metals in the surface sediments of Dongping Lake[J]. Ecology and Environment Sciences, 2016, 25(10):1699-1706(in Chinese).
[15] SEKHAR K C CHARY N S, KAMALA C T, et al. Fractionation studies and bioaccumulation of sediment-bound heavy metals in Kolleru lake by edible fish[J]. Environment International, 2004, 29(7):1001-1008. [16] 刘学利, 姚昕, 董杰, 等. 东平湖水环境研究进展与展望[J]. 中国农学报, 2016, 32(11):82-87. LIU X L, YAO X, DONG J, et al. Water environment of Dongping Lake[J]. Chinese Agricultural Science Bulletin, 2016, 32(11):82-87(in Chinese).
[17] 陈诗越, 董杰, 张重阳. 东平湖生态环境现状及流域可持续发展对策研究[J]. 安徽农业科学, 2007(5):1436-1437. CHEN S Y, DONG J, ZHANG C Y. Countermeasure study on eco-environmental status of Dongping Lake and sustainable development of its catchment[J]. Journal of Anhui Agricultural Sciences, 2007 (5):1436-1437(in Chinese).
[18] 李仲根, 冯新斌, 何天容, 等. 王水水浴消解-冷原子荧光法测定土壤和沉积物中的总汞[J]. 矿物岩石地球化学通报, 2005, 24(2):140-143. LI Z G, FENG X B, HE T R, et al. Determination of total mercury in soil and sediment by aquaregia digestion in the water bath coupled with cold vapor atom fluorescence spectrometry[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2005, 24(2):140-143(in Chinese).
[19] 王亚平, 黄毅, 王苏明, 等. 土壤和沉积物中元素的化学形态及其顺序提取法[J]. 地质通报, 2005, 24(8):728-734. WANG Y P, HUANG Y, WANG S M, et al. Chemical speciation of elements in sediments and soil and their sequential extraction process[J]. Geological Bulletin of China, 2005, 24(8):728-734(in Chinese).
[20] 蔡奎, 段亚敏, 栾文楼, 等. 石家庄农田区土壤重金属Cd、Cr、Pb、As、Hg形态分布特征及其影响因素[J]. 地球与环境, 2014, 42(6):742-749. CAI K, DUAN Y M, LUAN W L, et al. Form distribution characteristics and influencing factors of Cd, Cr, Pb, As and Hg in farmland soil from the Shijiazhuang Area, China[J]. Earth and Environment, 2014, 42(6):742-749(in Chinese).
[21] AKCAY H, OGUZ A, KARAPIRE C. Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments[J]. Water Research, 2003, 37(4):813-822. [22] 李海玲. 土壤有机质的测定(油浴加热重铬酸钾容量法)[J]. 农业科技与信息, 2011(10):52-53. LI H L. Determination of soil organic matter (potassium dichromate volumetric method with oil bath heating)[J]. Agricultural Science-Technology and Information, 2011 (10):52-53(in Chinese).
[23] 孔令昊, 杨丽原, 王龙凤, 等. 泗河表层沉积物重金属形态分布特征及风险分析[J]. 有色金属工程, 2013, 3(5):45-49. KONG L H, YANG L Y, WANG L F, et al. Speciation distribution characteristics and risk analysis of heavy metals in surface sediments of Sihe River[J]. Nonferrous Metals Engineering, 2013, 3(5):45-49(in Chinese).
[24] 杨新明, 庄涛, 韩磊, 等. 小清河污灌区农田土壤重金属形态分析及风险评价[J]. 环境化学, 2019, 38(3):644-652. YANG X M, ZHUANG T, HAN L, et al. Fraction distribution and ecological risk assessment of soil heavy metals in the farmland soil from the sewage irrigated area of Xiaoqing River[J]. Environmental Chemistry, 2019, 38(3):644-652(in Chinese).
[25] BURTON J G A. Sediment quality criteria in use around the world[J]. Limnology, 2002, 3(2):65-75. [26] 钟文珏, 曾毅, 祝凌燕. 水体沉积物质量基准研究现状[J]. 生态毒理学报, 2013, 8(3):285-294. ZHONG W Y, ZHENG Y, ZHU L Y. Current research status of sediment quality criteria[J]. Asian Journal of Ecotoxicology, 2013, 8(3):285-294(in Chinese).
[27] 陈明, 蔡青云, 徐慧, 等. 水体沉积物重金属污染风险评价研究进展[J]. 生态环境学报, 2015, 24(6):1069-1074. CHEN M, CAI Q Y, XU H, et al. Research progress of risk assessment of heavy metals pollution in water body sediments[J]. Ecology and Environment Sciences, 2015, 24(6):1069-1074(in Chinese).
[28] 王云倩. 东平湖沉积物中典型重金属污染研究[D]. 济南:济南大学,2015. WANG Y Q. The research of typical heavy metals pollution in sediments from Dongping Lake[D]. Jinan:Jinan University, 2015(in Chinese). [29] CHEN Y Z, YANG H, ZHANG Z K, et al. Application of equilibrium partitioning approach to the derivation of sediment quality guidelines for metals in Dianchi Lake[J]. Pedosphere, 2007, 17(3):284-294. [30] 张杰, 郭西亚, 曾野, 等. 太湖流域河流沉积物重金属分布及污染评估[J]. 环境科学, 2019, 40(5):2202-2210. ZHANG J, GUO X Y, ZENG Y. Spatial distribution and pollution assessment of heavy metals in river sediments from Lake Taihu Basin[J]. Environmental Science, 2019, 40(5):2202-2210(in Chinese).
[31] 中国环境监测总站. 中国土壤元素背景值[M]. 北京:中国环境科学出版社,1990:329-493. Environment Monitoring Station. Background value of soil elements in China[M]. Beijing:China Environment Science Press, 1990:329 -493(in Chinese).
[32] 赵一阳, 鄢明才. 黄河、长江、中国浅海沉积物化学元素丰度比较[J]. 科学通报, 1992, 37(13):1202. ZHAO Y Y, Y M C, Comparison of chemical abundances in sediments of the Yangtze, China and shallow seas[J]. Chinese Science Bulletin, 1992 , 37(13):1202(in Chinese).
[33] 黄廷林. 水体沉积物中重金属释放动力学及试验研究[J].环境科学学报, 1995, 15(4):440-446. HUANG T L. Kinetics of heavy metal release from aquatic sediments[J]. Acta Scientiae Circumstantiae, 1995, 15(4):440-446(in Chinese).
[34] 王沛芳, 胡燕, 王超, 等. 动水条件下重金属在沉积物水之间的迁移规律[J]. 土木建筑与环境工程, 2012, 34(3):151-158. WANG P F, HU Y, WANG C, et al. Analysis on mobility of heavy metals between sediment-water under different hydrodynamic conditions[J]. Journal of Civil and Environmental Engineering, 2012, 34(3):151-158(in Chinese).
[35] 刘良, 张祖陆. 南四湖表层沉积物重金属的空间分布、来源及污染评价[J]. 水生态学杂志, 2013, 34(6):7-15. LIU L, ZHANG L Z, Spatial distribution, sources metals in the surface and pollution assessment of heavy sediments of Nansihu Lake[J]. Journal of Hydroecology, 2013, 34(6):7-15(in Chinese).
[36] 谢意南, 欧阳美凤, 黄代中, 等. 洞庭湖及其入湖口沉积物中重金属的污染特征、来源与生态风险[J]. 环境化学, 2017, 36(10):2253-2264. XIE Y N, OUYANG M F, HUANG D Z, et al. Pollution characteristics, sources and ecological risk of heavy metals in sediments from Dongting lake and its lake inlets[J]. Environmental Chemistry, 2017, 36(10):2253-2264(in Chinese).
[37] 余秀娟, 霍守亮, 昝逢宇, 等. 巢湖表层沉积物中砷的分布特征及其污染评价[J]. 环境工程技术学报, 2012, 2(2):124-132. YU X J, HUO S L, ZAN F Y, et al. Distribution characteristics and contamination assessment of arsenic in surface sediments of Lake Chaohu, China[J]. Journal of Environmental Engineering Technology, 2012, 2(2):124-132(in Chinese).
[38] 薛培英, 赵全利, 王亚琼, 等. 白洋淀沉积物-沉水植物-水系统重金属污染分布特征[J]. 湖泊科学, 2018, 30(6):1525-1536. XUE P Y, ZHAO Q L, WANG Y Q, et al. Distribution characteristics of heavy metals in sediment-submerged macrophyte-water systems of Lake Baiyangdian[J]. Journal of Lake Sciences, 2018, 30(6):1525-1536(in Chinese).
[39] EL-KADY A A, WADE T L, SWEET S T, et al. Spatial distribution and ecological risk assessment of trace metals in surface sediments of Lake Qaroun, Egypt[J]. Environmental Monitoring Assessment, 2019,191(7):413. [40] BERIL S A, OGULCAN K. Heavy metal contamination in surface sediments of Gökçekaya Dam Lake, Eskişehir, Turkey[J]. Environmental Earth Sciences, 2017, 76(11):402. [41] 冯卫卫, 罗锡明, 刘丹丹. 寨上金矿矿区河流沉积物中砷的形态分析[J]. 生态环境学报, 2011, 20(4):659-662. FENG W W, LUO X M, LIU D D. Speciation of arsenic in sediment of the river around Zhaishang goldmine[J]. Ecology and Environment Sciences, 2011, 20(4):659-662(in Chinese).
[42] 王馨慧, 单保庆, 唐文忠, 等. 北京市凉水河表层沉积物中砷含量及其赋存形态[J]. 环境科学, 2016, 37(1):180-186. WANG X H, SHAN B Q, TANG W Z, et al. Arsenic content and speciation in the surficial sediments of Liangshui River in Beijing[J]. Environmental Science, 2016, 37(1):180-186(in Chinese).
[43] KARAK T, ABOLLINO O, BHATTACHARYYA P, et al. Fractionation and speciation of arsenic in three tea gardens soil profiles and distribution of As in different parts of tea plant (Camellia sinensis L.)[J]. Chemosphere, 2011, 85(6):948-960. [44] 韩春梅, 王林山, 巩宗强, 等. 土壤中重金属形态分析及其环境学意义[J]. 生态学杂志, 2005(12):1499-1502. HAN C M, WANG L S,GONG Z Q, et al. Chemical forms of soil heavy metals and their environmental significance[J]. Chinese Journal of Ecology, 2005 (12):1499-1502(in Chinese).
计量
- 文章访问数: 2126
- HTML全文浏览数: 2126
- PDF下载数: 38
- 施引文献: 0