茶叶残渣改性制备海绵状吸附材料及其对Pb(Ⅱ)、Cu(Ⅱ)和Cd(Ⅱ)的吸附性能

邱钰茵, 王娜娜, 肖唐付. 茶叶残渣改性制备海绵状吸附材料及其对Pb(Ⅱ)、Cu(Ⅱ)和Cd(Ⅱ)的吸附性能[J]. 环境化学, 2020, (11): 3180-3189. doi: 10.7524/j.issn.0254-6108.2019081703
引用本文: 邱钰茵, 王娜娜, 肖唐付. 茶叶残渣改性制备海绵状吸附材料及其对Pb(Ⅱ)、Cu(Ⅱ)和Cd(Ⅱ)的吸附性能[J]. 环境化学, 2020, (11): 3180-3189. doi: 10.7524/j.issn.0254-6108.2019081703
QIU Yuyin, WANG Nana, XIAO Tangfu. Preparation and performance of tea waste-modified spongy biosorbent for Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) adsorption[J]. Environmental Chemistry, 2020, (11): 3180-3189. doi: 10.7524/j.issn.0254-6108.2019081703
Citation: QIU Yuyin, WANG Nana, XIAO Tangfu. Preparation and performance of tea waste-modified spongy biosorbent for Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) adsorption[J]. Environmental Chemistry, 2020, (11): 3180-3189. doi: 10.7524/j.issn.0254-6108.2019081703

茶叶残渣改性制备海绵状吸附材料及其对Pb(Ⅱ)、Cu(Ⅱ)和Cd(Ⅱ)的吸附性能

    通讯作者: 王娜娜, E-mail: nnwang@gzhu.edu.cn
  • 基金项目:

    国家自然科学基金(U1612442,41907317)资助.

Preparation and performance of tea waste-modified spongy biosorbent for Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) adsorption

    Corresponding author: WANG Nana, nnwang@gzhu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (U1612442, 41907317).
  • 摘要: 本研究以浸泡过的茶叶为原材料,在强碱条件下进行黄原酸化改性,利用冷沉淀凝胶法成功制备出三维海绵状茶叶残渣改性吸附材料.该材料形状规则,呈多孔立体结构,便于固液分离.实验结果表明,该海绵状改性茶叶残渣对Pb(Ⅱ)、Cu(Ⅱ)和Cd(Ⅱ)的吸附4 h内达到平衡,其吸附行为受化学吸附控制,属于均一的单层吸附,最大吸附量分别为136.05、41.98、39.25 mg·g-1,吸附选择性遵循Pb(Ⅱ) > Cu(Ⅱ) > Cd(Ⅱ).X射线衍射分析(XRD)、X射线光电子能谱分析(XPS)、X射线能谱分析(EDS)和傅里叶红外光谱分析(FTIR)等光谱学分析结果表明,离子交换作用、含杂原子基团的络合作用和微沉淀作用是海绵状改性茶叶残渣吸附重金属离子的主要机理.
  • 加载中
  • [1] 万顺利, 马钊钊, 薛瑶,等.氧化锰改性的茶叶渣吸附水体中Pb(Ⅱ)[J]. 环境化学,2014,33(12):2198-2205.

    WAN S L, MA Z Z, XUE Y, et al. Study on sorption characteristic of tea waste modified by hydrated manganese oxide toward Pb(Ⅱ) in water[J]. Environmental Chemistry, 2014, 33(12):2198-2205(in Chinese).

    [2] 常艳丽.含镉废水处理技术研究进展[J]. 净水技术,2013,32(3):1-4.

    CHANG Y L. Advances in research of technological processes of cadmium-containing water treatment[J]. Water Purification Technology, 2013,32(3):1-4(in Chinese).

    [3] 谭雪梅.水体中重金属的来源与处理技术分析[J]. 产业与科技论坛,2015, 14(6):62-63.

    TAN X M. Analysis of sources and treatment techniques of heavy metals in water bodies[J]. Industrial Science Tribune, 2015, 14(6):62-63(in Chinese).

    [4] 刘立华, 杨正池, 赵露.重金属吸附材料的研究进展[J]. 中国材料进展,2018,37(2):100-108

    ,125. LIU L H, YANG Z C, ZHAO L. Research progress in adsorption materials for heavy metals[J]. Materials China, 2018, 37(2):100-108, 125(in Chinese).

    [5] ANWAR J, SHA QUE U, ZAMAN W, et al. Removal of Pb(Ⅱ) and Cd(Ⅱ) from water by adsorption on peels of banana[J]. Bioresource Technology, 2010, 101(6):1752-1755.
    [6] 尤伟, 李华兰.改性绿茶对Pb2+的吸附性能研究[J]. 四川师范大学学报(自然科学版),2014,37(2):239-242. YOU W, LI H L. Study on adsorption ability of Pb2+ by modified green tea[J]. Journal of Sichuan Normal University (Natural Science), 2014, 37(2):239-242(in Chinese).
    [7] 许丽梅, 陈泳诗, 林婷婷,等.由茶梗改性制备磁性纤维素材料及其对废水中Cu(Ⅱ)的吸附性能[J]. 纤维素科学与技术,2018,26(2):9-16.

    XU L M, CHEN Y S, LIN T T, et al. Magnetic cellulose microspheres, an adsorbent made from tea:Preparation, characterization and adsorption properties of Cu(Ⅱ) in wastewater[J]. Journal of Cellulose Science and Technology, 2018, 26(2):9-16(in Chinese).

    [8] WAN S L, LIU G, HE H, et al. Hydrated ferric oxide (HFO) encapsulated tea waste for enhanced lead(Ⅱ), cadmium(Ⅱ), and copper(Ⅱ) removal from waters[J]. Desalination and Water Treatment, 2016, 41(57):19456-19465.
    [9] ZHANG Y, LI X, LI Y. Influence of solution chemistry on heavy metals removal by bioadsorbent tea waste modified by poly (vinyl alcohol)[J]. Desalination and Water Treatment, 2015, 53(8):2134-2143.
    [10] MONDAL M K. Removal of Pb(Ⅱ) from aqueous solution by adsorption using activated tea waste[J]. Korean Journal of Chemical Engineering, 2010, 27(1):144-151.
    [11] 万顺利,薛瑶,马钊钊,等.茶叶基水合氧化铁吸附水体中Pb(Ⅱ)的性能[J].环境科学,2014,35(10):3782-3788.

    WAN S L, XUE Y, MA Z Z, et al. Sorption characteristics of tea waste modified by hydrated ferric oxide toward Pb(Ⅱ) in water[J]. Environmental Science, 2014, 35(10):3782-3788(in Chinese).

    [12] 马宏飞, 李薇, 韩秋菊,等.茶渣对Ni(Ⅱ)的吸附性能研究[J]. 科学技术与工程,2013,13(13):3824-3827.

    MA H F, LI W, HAN Q J, et al. Research on the adsorption performance of Ni(Ⅱ) with tea dust[J]. Science Technology and Engineering, 2013, 13(13):3824-3827(in Chinese).

    [13] 宋庆平, 孟祥瑞, 王崇侠,等.新型黄原酸壳聚糖对铅离子的吸附及机理研究[J]. 离子交换与吸附,2014,30(2):115-123.

    SONG Q P, MENG X R, WANG C X, et al. Adsorption performance and mechanism of lead ions adsorbed on xanthated chitosan[J]. Ion Exchange and Adsorption, 2014, 30(2):115-123(in Chinese).

    [14] WANG N N, XU X J, LI H Y, et al. High performance and prospective application of xanthate-modified thiourea chitosan sponge-combined Pseudomonas putida and Talaromyces amestolkiae biomass for Pb(Ⅱ) removal from wastewater[J]. Bioresource Technology, 2017, 233(11):58-66.
    [15] 张军科, 郝庆菊, 江长胜.废弃茶叶渣对废水中铅(Ⅱ)和镉(Ⅱ)的吸附研究[J]. 中国农学通报,2008,25(4):256-259.

    ZHANG J K, HAO Q J, JIANG C S. Study on adsorption of lead(Ⅱ) and cadmium(Ⅱ) from waste water with waste tea[J]. Chinese Agricultural Science Bulletin, 2008, 25(4):256-259(in Chinese).

    [16] LIANG S, GUO X Y, FENG N C, et al. Application of orange peel xanthate for the adsorption of Pb2+ from aqueous solutions[J]. Journal of Hazardous Materials, 2009, 170(1):425-429.
    [17] 卢宏翔.茶渣对模拟废水中镉的吸附动态与机理研究[D].杭州:浙江工商大学,2012. LU H X. Adsorption performance and mechanism of lead Ions adsorbed on xanthated chitosan[D]. Hangzhou:Journal of Zhejiang Gongshang University, 2012(in Chinese).
    [18] WANG R H, ZHU X F, QIAN W, et al. Effect of tea polyphenols on copper adsorption and manganese release in two variable-charge soils[J]. Journal of Geochemical Exploration, 2018, 190:374-380.
    [19] NASUHA N, HAMEED B H. Adsorption of methylene blue from aqueous solution onto NaOH-modified rejected tea[J]. Chemical Engineering Journal, 2011, 166(2):783-786.
    [20] 吴云海, 谢正威, 胡玥,等.茶叶渣吸附水中砷的动力学与热力学研究[J]. 湖北农业科学,2010,49(4):859-862.

    WU Y H, XIE Z W, HU Y, et al. Arsenic adsorption from aqueous solution by waste tea:Kinetic and thermodynamics studies[J]. Hubei Agricultural Sciences, 2010, 49(4):859-862(in Chinese).

    [21] HARABOR A, ROTARU P, HARABOR N A, et al. Ni-susbtituted non-stoichiometric (Bi, Pb, Cu)-2223 superconductor:Excess conductivity, XRD analysis and thermal behavior[J]. Ceramics International, 2018, 45(2):2742-2750.
    [22] CELI L, SCHNITZER M, NEGRE, M. Analysis of carboxyl groups in soil humic acids by a wet chemical method, fourier-transform infrared spectrophotometry and solution-state carbon-13 nuclear magnetic resonance. A comparative study[J]. Soil Science, 1997, 162(3):189-197.
    [23] WANG N N, XU X J, YANG L, et al. Plate column adsorption of Pb(Ⅱ) from industrial wastewater on sponge-type composite adsorbent:Optimization and application[J]. Journal of Industrial and Engineering Chemistry, 2018, 66(10):333-342.
    [24] CHEN Y W, WANG J L. The characteristics and mechanism of Co(Ⅱ) removal from aqueous solution by a novel xanthate-modified magnetic chitosan[J]. Nuclear Engineering and Design, 2011, 242(12):452-457.
  • 加载中
计量
  • 文章访问数:  1238
  • HTML全文浏览数:  1238
  • PDF下载数:  41
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-17

茶叶残渣改性制备海绵状吸附材料及其对Pb(Ⅱ)、Cu(Ⅱ)和Cd(Ⅱ)的吸附性能

    通讯作者: 王娜娜, E-mail: nnwang@gzhu.edu.cn
  • 广州大学环境科学与工程学院/珠江三角洲水质安全与保护教育部重点实验室, 广州, 510006
基金项目:

国家自然科学基金(U1612442,41907317)资助.

摘要: 本研究以浸泡过的茶叶为原材料,在强碱条件下进行黄原酸化改性,利用冷沉淀凝胶法成功制备出三维海绵状茶叶残渣改性吸附材料.该材料形状规则,呈多孔立体结构,便于固液分离.实验结果表明,该海绵状改性茶叶残渣对Pb(Ⅱ)、Cu(Ⅱ)和Cd(Ⅱ)的吸附4 h内达到平衡,其吸附行为受化学吸附控制,属于均一的单层吸附,最大吸附量分别为136.05、41.98、39.25 mg·g-1,吸附选择性遵循Pb(Ⅱ) > Cu(Ⅱ) > Cd(Ⅱ).X射线衍射分析(XRD)、X射线光电子能谱分析(XPS)、X射线能谱分析(EDS)和傅里叶红外光谱分析(FTIR)等光谱学分析结果表明,离子交换作用、含杂原子基团的络合作用和微沉淀作用是海绵状改性茶叶残渣吸附重金属离子的主要机理.

English Abstract

参考文献 (24)

目录

/

返回文章
返回