典型城市人工湿地优势植物汞分布特征
Distribution characteristics of mercury in plants in typical urban constructed wetlands
-
摘要: 以重庆市4个典型城市人工湿地(观音塘湿地公园、彩云湖国家湿地公园、园博园湿地公园、秀湖湿地公园)为研究对象,分别于2017年3、6、9、12月调查并采集了湿地优势植物样品,分析样品总汞、甲基汞浓度,探讨城市人工湿地中植物汞的时空分布特征.结果表明,调查区域植物汞质量浓度范围为45.29—231.01 μg·kg-1(平均值为33.99 ±8.61 μg·kg-1).甲基汞质量浓度范围为45.29—232.01 ng·kg-1(平均值为 145.45 ±48.72 ng·kg-1);其中,园博园湿地植物总汞质量浓度最低,观音塘湿地公园植物甲基汞质量浓度均较其他3个湿地公园植物高;在同一湿地中,植物总汞春秋浓度较高,夏季略有降低,冬季最低,而甲基汞浓度先逐渐升高,并在6—9月达到最大值,随后开始下降;植物根部总汞、甲基汞含量高于茎和叶.城市人工湿地植物有一定的汞富集能力,可在一定程度上减轻水体汞污染.Abstract: To explore the spatial and temporal distribution of plant mercury in different constructed wetlands in Chongqing, total mercury and methylmercury in the dominant plants in four selected wetlands (Guanyintang Wetland Park, Caiyun Lake National Wetland Park, Yuanboyuan Wetland Park, Xiuhu Wetland Park) were analyzed seasonally in 2017.The results showed that the concentration of plant mercury in the study area ranged from 11.57 to 75.44 μg·kg-1, with an average of 33.99 ±8.61 μg·kg-1, and methylmercury concentration was in the range of 45.29—231.01 μg·kg-1 with an average of 145.45 ±48.72 ng·kg-1. The lowest total mercury concentration appeared in the Yuanboyuan wetland, and the methylmercury concentration in Guanyintang Wetland Park was higher than that in the other three wetland parks. Seasonal variation of the total mercury and methylmercury was obvious with higher plant mercury in the spring and autumn and higher methylmercury in the summer and autumn. The total mercury and methylmercury contents in the plant roots were higher than those in the stems and leaves. Urban constructed wetland plants showed certain mercury enrichment ability, which could reduce mercury pollution to some extent.
-
Key words:
- plants /
- total mercury /
- methylmercury /
- urban constructed wetlands /
- spatial and temporal distribution
-
[1] KELLY C A, RUDD J W M, BODALY R A. Increases of greenhouse gases and methylmercury following of an experimental reservoir[J]. Environmental Science & Technology,1997,31:13341-13344. [2] GUENTZEL J L, LANDING W M, GILL G A, et al. Mercury and major ions in rainfall, throughfall, and foliage from the Florida Everglades[J]. Science of the Total Environment, 1998, 213(1-3):43-51. [3] HEYES A, MOORE T R, RUDD J W M. Mercury and methylmercury in decomposing vegetation of a pristine and impounded wetland[J]. Journal of Environmental Quality,1998, 27(3):591-599. [4] GRIGAL D F. Inputs and outputs of mercury from terrestrial watersheds:a review[J]. Environmental Reviews, 2002, 10(1):1-39. [5] PERGENT-MARTINI C. Posidonia oceanica:a biological indicator of past and present mercury contamination in the mediterranean sea[J]. Marine Environmental Research,1998, 45(2):101-111. [6] 张成,宋丽,王定勇, 等. 三峡库区消落带甲基汞变化特征的模拟[J]. 中国环境科学, 2014, 34(2):499-504. ZHANG C, SONG L, WANG D Y. Simulation on the variation characteristics of methylmercury of the water-level-fluctuating zone in the Three Gorges Area[J]. China Environmental Science, 2014, 34(2):499-504(in Chinese).
[7] 张翔,张成,孙荣国, 等. 三峡库区消落带3种植物淹水后汞的动态变化及其对水体的影响[J]. 环境科学, 2014, 35(12):4560-4566. ZHANG X, ZHANG C, SUN R G. Mercury dynamics of several plants collected from the water-level fluctuation zone of the threegorges reservoir area during flooding and its impact on water body[J]. Environmental Science, 2014, 35(12):4560-4566(in Chinese).
[8] 葛继稳. 湿地资源及管理研究实证——以"千湖之省"湖北省为例[M]. 北京:科学出版社, 2007. GE J W. An empirical study on wetland resources and management:A case study of Hubei Province "The Province of Thousand Lakes"[M]. Beijing:Science Press, 2007(in Chinese). [9] 傅娇艳, 丁振华. 湿地生态系统服务、功能和价值评价研究进展[J]. 应用生态学报, 2007, 18(3):681-686. FU J Y, DING Z H. Research progress on wetland ecosystem service and its valuation[J]. Chinese Journal of Applied Ecology, 2007,18(3):681-686(in Chinese).
[10] 仇广乐, 冯新斌, 梁琏等. 溶剂萃取-水相乙基化衍生GCCVAFS联用测定苔藓样品中的甲基汞[J]. 分析测试学报, 2005, 24(1):29-32. QIU G L, FENG X B, LIANG L. Determination of methylmecury in moss by ethylation- gas chromatography -cold vapor atomic fluorescence spectrometry with solvent extraction[J]. Journal of Instrumental Analysis2005, 24(1):29-32(in Chinese).
[11] 梁丽, 王永敏, 李先源等. 三峡水库消落带植物汞的分布特征[J]. 环境科学, 2015, 36(11):4103-4111. LIANG L, WANG Y M, LI X Y. Distribution of mercury in plants at water-level-fluctuating zone in the three gorges reservoir[J]. Environmental Science, 2015, 36(11):4103-4111(in Chinese).
[12] WANG Y M,YIN D L, XIANG Y P, et al. A review of studies on the biogeochemical behaviors of mercury in the Three Gorges Reservoir, China[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(5):686-694(in Chinese). [13] 吴浩. 中国主要红树林湿地中甲基汞的分布规律及其微生物甲基化作用[D]. 厦门:厦门大学, 2009. WU H. The distribution and microbial methylation of methylmercury in mangrove wetlands in China[D]. Xiamen:Xiamen University 2009(in Chinese). [14] 靖元孝,陈兆平,杨丹菁. 风车草对生活污水的净化效果及其在人工湿地的应用[J]. 应用与环境生物学报, 2002, 8(6):614-617. JING Y X,CHEN Z P, YANG D J. Purifying efficiency of Cyperus alternifolius to domestic sewage and its application in constructed wetland[J]. Applied & Environmental Biology, 2002, 8(6):614-617(in Chinese).
[15] 冯新斌. 水库汞的生物地球化学循环研究进展[J]. 环保科技, 2011, 17:1-5. FENG X B. A review on mercury biogeochemical cycling in reservoirs[J]. Environmental Protection and Technology, 2011 , 17:1-5(in Chinese).
[16] STECHER M C, WEAVER R W.Effects of umbrella palms and wastewater depth on wastewater treatment in a subsurface f1ow constructed wetland[J]. Environmental Technology, 2003, 24(4):471-478. [17] 王娅,赵铮,木志坚,等.三峡库区典型农田小流域水体汞的时空分布特征[J]. 环境科学, 2014, 35(11):4095-4102. WANG Y, ZHAO Z, MU Z J. Spatial and temporal distribution of mercury in water of a small typical agricultural watershed in the Three Gorges Reservoir region[J]. Environmental Science, 2014(11):4095-4102(in Chinese).
[18] 樊宇飞, 刘伟豪, 孙涛, 等. 不同类型城市人工湿地水体汞的分布特征[J]. 环境科学, 2019, 40(5):2226-2233. FAN Y F, LIU W H, SUN T, et al. Distribution characteristics of mercury in different urban constructed wetlands[J]. Environmental Science, 2019, 40(5):2226-2233(in Chinese).
[19] ZHAO L, ANDERSON C W N, QIU G, et al. Mercury methylation in paddy soil:Source and distribution of mercury species at a Hg mining area, Guizhou Province, China[J]. Biogeosciences, 2016,13(8):1-31. [20] WDLSCHLNGER D,KOCK H H,SCHROEDER W H,et al. Mechanism and significance of mercury volatilization from contaminated floodplains of the German River Elbe[J]. Atmos Environ, 2000,34:3745-3755. [21] 陈效,徐盈,张甲耀等.硫酸盐还原菌对汞的甲基化作用及其影响因子[J]. 水生生物学报, 2005, 291:50-54. CHEN X, XU Y, ZHANG J Y. Methylation of mercury by sulfate-reducing bacteria and its influencing factors[J]. Acta Hydrobiologica Sinica, 2005 , 291:50-54(in Chinese).
[22] BARGHIGIANI C, RISTORI T, BAULEO R. Pinus as an atmospheric Hg biomonitor[J].Environmental Technology, 1991,12(12):1175-1181. [23] 王训,袁巍,冯新斌.森林生态系统汞的生物地球化学过程[J]. 化学进展,2017,29(9):970-980. WANG X, YUAN W, FENG X B. Global review of mercury biogeochemical processes in forest ecosystems[J]. Progress in Chemistry, 2017, 29(9):970-980(in Chinese).
[24] YUAN W, SOMMAR J, LIN C J, et al. Stable isotope evidence shows reemission of elemental mercury vapor occurring after reductive loss from foliage[J]. Environ Sci Technol,2019,53(2):651-660. [25] ZU Y Q, YUAN L, SCHVARTZ C, et al. Accumulation of Pb,Cd,Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area,China[J].Environment International, 2004, 30(4):567-576. [26] 王美林, 孔令韶, 胡肄慧等. 贵州万山汞矿地区的植物及植物积累汞的研究[J]. 植物生态学与地植物学丛刊, 1983, 7(1):20-30. WANG M L, KONG L S, HU S H. A case study on accumulation of mercury in plants and plants in Wanshan mercury mine area, Guizhou[J]. Journal of Plant Ecology and Geobotany, 1983, 7(1):20-30(in Chinese).
计量
- 文章访问数: 2107
- HTML全文浏览数: 2107
- PDF下载数: 34
- 施引文献: 0