固体废物焚烧过程中二噁英的排放和生成机理研究进展

李雁, 郭昌胜, 侯嵩, 高建峰, 徐建. 固体废物焚烧过程中二噁英的排放和生成机理研究进展[J]. 环境化学, 2019, 38(4): 746-759. doi: 10.7524/j.issn.0254-6108.2018110103
引用本文: 李雁, 郭昌胜, 侯嵩, 高建峰, 徐建. 固体废物焚烧过程中二噁英的排放和生成机理研究进展[J]. 环境化学, 2019, 38(4): 746-759. doi: 10.7524/j.issn.0254-6108.2018110103
LI Yan, GUO Changsheng, HOU Song, GAO Jianfeng, XU Jian. The formation mechanisms and emission of dioxin during the solid waste incineration process[J]. Environmental Chemistry, 2019, 38(4): 746-759. doi: 10.7524/j.issn.0254-6108.2018110103
Citation: LI Yan, GUO Changsheng, HOU Song, GAO Jianfeng, XU Jian. The formation mechanisms and emission of dioxin during the solid waste incineration process[J]. Environmental Chemistry, 2019, 38(4): 746-759. doi: 10.7524/j.issn.0254-6108.2018110103

固体废物焚烧过程中二噁英的排放和生成机理研究进展

  • 基金项目:

    国家自然科学基金(41703122)资助.

The formation mechanisms and emission of dioxin during the solid waste incineration process

  • Fund Project: Supported by the National Natural Science Foundation of China (41703122).
  • 摘要: 二噁英作为一类持久性有机污染物,因其具有强毒性和生物累积性而被广泛关注,为减少二噁英对生态环境造成的影响,研究环境中二噁英的来源及生成机理尤为重要.固体废物焚烧是二噁英在环境中的主要来源之一.本文综述了固体废物焚烧过程中产生二噁英的浓度水平,着重分析了不同因素对二噁英生成情况的影响,同时结合近年来量子化学在研究燃烧过程中二噁英生成机理方面的应用,系统阐述了典型二噁英前驱物燃烧生成二噁英的反应路径,并对深入研究固体废物焚烧中产生的二噁英对周边环境的危害提出了建议.
  • 加载中
  • [1] DOMINGO J L, GRANERO S, SCHUHMACHER M. Congener profiles of PCDD/Fs in soil and vegetation samples collected near to a municipal waste incinerator[J]. Chemosphere, 2001, 43(4-7): 517-524.
    [2] OLIE K, VERMEULEN P L, HUTZINGER O. Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands[J]. Chemosphere, 1977, 6(8): 455-459.
    [3] 吴永宁, 江桂彬. 重要有机污染物痕量与超痕量检测技术[M]. 北京:化学工业出版社, 2007. WU Y N, JIANG G B. Trace and ultra-trace detection technology for important organic pollutants[M]. Beijing: Chemical Industry Press, 2007 (in Chinese).
    [4] 王晓玲, 郑云雁, 李小芳. 二恶英事件及其影响(综述)[J]. 中国食品卫生杂志, 1999, 11(5): 46-48.

    WANG X L, ZHENG Y Y, LI X F. Dioxin events and their effects (review)[J]. Chinese Journal of Food Hygiene, 1999, 11(5): 46-48 (in Chinese).

    [5] 孙敬龙. 城市生活垃圾焚烧过程二英合成机理及拟制方法实验研究[D]. 天津:天津大学, 2012. SUN J L. Experimental study on the mechanism and inhibition of synthesis of PCDD/Fs in municipal waste incinerators[D]. Tianjin: Tianjin University, 2012 (in Chinese).
    [6] 陈彤. 城市生活垃圾焚烧过程中二英的形成机理及控制技术研究[D]. 杭州:浙江大学, 2006. CHEN T. Mechanism and experimental study on PCDD/Fs formation and control during municipal solid wastes incineration[D]. Hangzhou: Zhejiang University, 2006 (in Chinese).
    [7] HAGEN P E, WALLS M P. The Stockholm convention on persistent organic pollutants[J]. Review of European Community and International Environmental Law, 2003, 11(3):328-342.
    [8] MUKHERJEE A, DEBNATH B, GHOSH S K. A review on technologies of removal of dioxins and furans from incinerator flue gas[J]. Procedia Environmental Sciences, 2016, 35: 528-540.
    [9] VOGG H. Recent findings on the formation and decomposition of PCDD/PCDF in municipal solid waste incineration[J]. Waste Management & Research, 1987, 5(3): 285-294.
    [10] 徐梦侠. 城市生活垃圾焚烧厂二恶英排放的环境影响研究[D]. 杭州:浙江大学, 2009. XU M X. Environmental impact study on PCDD/F emissions from the municipal solid waste incineration plant[D]. Hangzhou: Zhejiang University, 2009 (in Chinese).
    [11] 张刚. 城市固体废物焚烧过程二英与重金属排放特征及控制技术研究[D]. 广州:华南理工大学, 2013. ZHANG G. Study on PCDD/F and heavy metal emission characteristics and control technology during municipal solid waste incineration[D]. Guangzhou: South China University of Technology, 2013 (in Chinese).
    [12] OH J E, CHOI S D, LEE S J, et al. Influence of a municipal solid waste incinerator on ambient air and soil PCDD/Fs levels[J]. Chemosphere, 2006, 64(4): 579-587.
    [13] HU S W, CHANGCHIEN G P, CHAN C C. PCDD/Fs levels in indoor environments and blood of workers of three municipal waste incinerators in Taiwan[J]. Chemosphere, 2004, 55(4): 611-620.
    [14] CHENG P S, HSU M S, MA E, et al. Levels of PCDD/FS in ambient air and soil in the vicinity of a municipal solid waste incinerator in Hsinchu[J]. Chemosphere, 2003, 52(9): 1389-1396.
    [15] LEE S J, CHOI S D, JIN G Z, et al. Assessment of PCDD/F risk after implementation of emission reduction at a MSWI[J]. Chemosphere, 2007, 68(5): 856-863.
    [16] BIE R, LI S, WANG H. Characterization of PCDD/Fs and heavy metals from MSW incineration plant in Harbin[J]. Waste Management, 2007, 27(12): 1860-1869.
    [17] NI Y, ZHANG H, FAN S, et al. Emissions of PCDD/Fs from municipal solid waste incinerators in China[J]. Chemosphere, 2009, 75(9): 1153-1158.
    [18] CASERINI S, CERNUSCHI S, GIUGLIANO M, et al. Air and soil dioxin levels at three sites in Italy in proximity to MSW incineration plants[J]. Chemosphere, 2004, 54(9): 1279-1287.
    [19] SCHUHMACHER M, GRANERO S, LLOBET J M, et al. Assessment of baseline levels of PCDD/F in soils in the neighbourhood of a new hazardous waste incinerator in Catalonia, Spain[J]. Chemosphere, 1997, 35(9): 1947-1958.
    [20] SCHUHMACHER M, AGRAMUNT M C, RODRIGUEZLARENA M C, et al. Baseline levels of PCDD/Fs in soil and herbage samples collected in the vicinity of a new hazardous waste incinerator in Catalonia, Spain[J]. Chemosphere, 2002, 46(9): 1343-1350.
    [21] 胡兰芳, 王凤仙. 二恶英类化合物污染的研究及风险评价[J]. 中国科技信息, 2011(16): 21-22. HU L F, WANG F X. Study on the pollution of dioxin-like compounds and its risk assessment[J]. China Science and Technology Information, 2011

    (16): 21-22.(in Chinese).

    [22] GÖTZ R, BERGEMANN M, STACHEL B, et al. Dioxin in the river Elbe[J]. Chemosphere, 2017, 183: 229-241.
    [23] 唐娜, 李馥琪, 罗伟铿,等.废物焚烧及工业金属冶炼烟气中二英的排放水平及同系物分布[J]. 安全与环境学报, 2018,18(4): 1496-1502.

    TANG N, LI F Q, LUO W K, et al. Concentrations and congener distributions of PCDD/Fs in the flue gas from combustion and metallurgical processing[J]. Journal of Safety and Environment, 2018,18(4):1496-1502.

    [24] CHANG M B, HUANG T F. The effects of temperature and oxygen content on the PCDD/PCDFs formation in MSW fly ash[J]. Chemosphere, 2000, 40(2): 159-164.
    [25] PEKÁREK V, GRABIC R, MARKLUND S, et al. Effects of oxygen on formation of PCB and PCDD/F on extracted fly ash in the presence of carbon and cupric salt[J]. Chemosphere, 2001, 43(4): 777-782.
    [26] ZHANG H J, NI Y W, CHEN J P, et al. Influence of variation in the operating conditions on PCDD/F distribution in a full-scale MSW incinerator[J]. Chemosphere, 2008, 70(4): 721-730.
    [27] 陆胜勇, 严建华, 李晓东,等.废弃物焚烧飞灰中从头合成二英的试验研究——氧、碳、催化剂的影响[J]. 中国电机工程学报, 2003, 23(11): 178-183.

    LU S Y, YAN J H, LI X D, et al. Mechanism and experimental study on PCDD/Fs formation emission and control during solid waste and coal combustion processes[J]. Proceedings of the CSEE, 2003, 23(11): 178-183(in Chinese).

    [28] 陈帅帅.电子垃圾处理过程中二英检测与减排研究[D]. 常州:江苏理工学院, 2018. CHEN S S. Research on dioxin detection and emission reduction in electronic waste treatment process[D]. Changzhou: Jiangsu University of Technology, 2018 (in Chinese).
    [29] NGANAI S, LOMNICKI S, DELLINGER B. Formation of PCDD/Fs from oxidation of 2-monochlorophenol over an Fe2O3/silica surface[J]. Chemosphere, 2012, 88(3): 371-376.
    [30] QIAN Y, ZHENG M, LIU W, et al. Influence of metal oxides on PCDD/Fs formation from pentachlorophenol[J]. Chemosphere, 2005, 60(7): 951-958.
    [31] YAMADA M, WAKI I, SAKAIRI M, et al. Real-time-monitored decrease of trichlorophenol as a dioxin surrogate in flue gas using iron oxide catalyst[J]. Chemosphere, 2004, 54(10): 1475-1480.
    [32] GULLETT B K, BRUCE K R, BEACH L O. The effect of metal catalysts on the formation of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran precursors[J]. Chemosphere, 1990, 20(10): 1945-1952.
    [33] ADDINK R, CNUBBEN P A J P, OLIE K. Formation of polychlorinated dibenzo-p-dioxins/dibenzofurans on fly ash from precursors and carbon model compounds[J]. Carbon, 1995, 33(10): 1463-1471.
    [34] ZHANG M, YANG J, BUEKENS A, et al. PCDD/F catalysis by metal chlorides and oxides[J]. Chemosphere, 2016, 159: 536-544.
    [35] GULLETT B K, BRUCH K R, BEACH L O, et al. Mechanistic steps in the production of PCDD and PCDF during waste combustion[J]. Chemosphere, 1992, 25(7-10): 1387-1392.
    [36] KUZUHARA S, SATO H, E. KASAI A, et al. Influence of metallic chlorides on the formation of PCDD/Fs during low-temperature oxidation of carbon[J]. Environmental Science & Technology, 2003, 37(11): 2431-2435.
    [37] STIEGLITZ L, ZWICK G, BECK J, et al. On the de-novo synthesis of PCDD/PCDF on fly ash of municipal waste incinerators[J]. Chemosphere, 1989, 18(1): 1219-1226.
    [38] HOU S, MACKIE J C, KENNEDY E M, et al. Comparative study on the formation of toxic species from 4-chlorobiphenyl in fires: Effect of catalytic surfaces[J]. Procedia Engineering, 2013, 62: 350-358.
    [39] HELL K, STIEGLITZ L, ALTWICKER E R, et al. Reactions of 2,4,6-trichlorophenol on model fly ash: oxidation to CO and CO2, condensation to PCDD/F and conversion into related compounds[J]. Chemosphere, 2001, 42(5-7): 697-702.
    [40] YANG J, MI Y, LI X, et al. Formation of dioxins on NiO and NiCl2 at different oxygen concentrations[J]. Chemosphere, 2015, 133: 97-102.
    [41] DEROSA M C, CRUTCHLEY R J. Photosensitized singlet oxygen and its applications[J]. Coordination Chemistry Reviews, 2002, 233-234(2): 351-371.
    [42] SHCHERBAKOV N V, EMEL'YANOV A N, KHAULA E V, et al. Photo-and thermogeneration of singlet oxygen by the metal ions deposited on Al2O3 and SiO2[J]. Russian Journal of Physical Chemistry, 2006, 80(5): 799-802.
    [43] ROMANOV A N, RUFOV Y N, KORCHAK V N. Thermal generation of singlet oxygen (1ΔgO2) on ZSM-5 zeolite[J]. Mendeleev Communications, 2000, 10(3): 116-117.
    [44] SUMMOOGUM S, DLUGOGORSKI B Z, KENNEDY E M, et al. Low temperature oxidation of biphenyl in an alumina reactor: Possible initiation by O2 (1Δ)[J]. Combustion Institute Australian & New Zealand, 2011,9: 183-186.
    [45] 赵英, 赵毅, 马双忱. 亲核取代──热分解法破坏多氯联苯[J]. 华北电力大学学报, 1997,24(1): 63-68.

    ZHAO Y, ZHAO Y, MA S C. Nucleophilic substitution-the destruction of PCBs by thermal decomposition[J]. Journal of North China Electric Power university, 1997,24(1): 63-68(in Chinese).

    [46] TAKACS L, MOILANEN G. Simultaneous control of PCDD/PCDF, HCI and NOX emissions from municipal solid waste incinerators with ammonia injection[J]. Air Repair, 1991, 41(5): 716-722.
    [47] 章骥.水对二英从头合成影响的试验研究及二英从头合成的模型验证[D]. 杭州:浙江大学, 2006. ZHANG J. Experimental and modeling study on the role of water in de novo synthesis of polychlorinated dibenzo-p-dioxins and dibenzofurans[D]. Hangzhou: Zhejiang University, 2006.(in Chinese).
    [48] ZHAN M, CHEN T, FU J, et al. High temperature suppression of dioxins[J]. Chemosphere, 2016, 146: 182-188.
    [49] RYAN S, TOUATI A, WIKSTRÖM E, et al. Gas-and solid-phase partitioning of PCDDs/Fs on MSWI fly ash and the effects of sampling[J]. Organohalogen Compounds, 2003, 63: 45-58.
    [50] 张智平, 倪余文, 杨志军,等.垃圾焚烧过程二英生成的研究进展[J]. 化工进展. 2004, 23(11): 1161-1168.

    ZHANG Z P, NI Y W, YANG Z J, et al. Research progress on dioxin formation during waste incineration[J]. Chemical Industry and Engineering Progress, 2004, 23(11): 1161-1168 (in Chinese).

    [51] WIKSTRÖM E, RYAN S, TOUATI A, et al. Origin of carbon in polychlorinated dioxins and furans formed during sooting combustion[J]. Environmental Science & Technology, 2004, 38(13): 3778-3784.
    [52] SHAO K, YAN J H, LI X D, et al. Inhibition of de novo synthesis of PCDD/Fs by SO2 in a model system[J]. Chemosphere, 2010, 78(10): 1230-1235.
    [53] STIEGLITZ L, VOGG H. On formation conditions of PCDD/PCDF in fly ash from municipal waste incinerators[J]. Chemosphere, 1987, 16(8): 1917-1922.
    [54] HUANG H, BUEKENS A. On the mechanisms of dioxin formation in combustion processes[J]. Chemosphere, 1995, 31(9): 4099-4117.
    [55] 罗阿群, 刘少光, 林文松,等.二英生成机理及减排方法研究进展[J]. 化工进展, 2016, 35(3): 910-916.

    LUO A Q, LIU S G, LIN W S, et al. Progress of formation mechanisms and emission reduction methods of PCDD/Fs[J]. Chemical Industry and Engineering Progress, 2016, 35(3): 910-916 (in Chinese).

    [56] CAINS P W, MCCAUSLAND L J, FERNANDES A R, et al. Polychlorinated dibenzo-p-dioxins and dibenzofurans formation in incineration: Effects of fly ash and carbon source[J]. Environmental Science & Technology, 1997, 31(3): 776-785.
    [57] TUPPURAINEN K, HALONEN I, RUOKOJÄRVI P, et al. Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: A review[J]. Chemosphere, 1998, 36(7): 1493-1511.
    [58] FERNÁNDEZ P Y, SUÁREZ E, LÓPEZ R, et al. The role of CuCl on the mechanism of dibenzo-p-dioxin formation from poly-chlorophenol precursors: A computational study[J]. Chemosphere, 2016, 145: 77-82.
    [59] MCKAY G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review[J]. Chemical Engineering Journal, 2002, 86(3): 343-368.
    [60] 郁万妮. 以卤代苯酚为前体物的二英气相形成机理研究[D]. 济南:山东大学, 2013. YU W N. Mechanism study on the homogeneous gas-phase formation of PXDD/Fs from halogenated phenols as precusors[D]. Jinan: Shandong University, 2013 (in Chinese).
    [61] EVANS C S, DELLINGER B. Mechanisms of dioxin formation from the high-temperature pyrolysis of 2-chlorophenol[J]. Environmental Science & Technology, 2003, 37(24): 5574-5580.
    [62] EVANS C S, DELLINGER B. Mechanisms of dioxin formation from the high-temperature oxidation of 2-chlorophenol[J]. Environmental Science & Technology, 2005, 39(1): 122-127.
    [63] SIDHU S S, MAQSUD L, DELLINGER B, et al. The homogeneous, gas-phase formation of chlorinated and brominated dibenzo-p-dioxin from 2,4,6-trichloro-and 2,4,6-tribromophenols [J]. Combustion & Flame, 1995, 100(1-2): 11-20.
    [64] BORN J G P, LOUW R, MULDER P. Formation of dibenzodioxins and dibenzofurans in homogenous gas-phase reactions of phenols[J]. Chemosphere, 1989, 19(1-6): 401-406.
    [65] WEBER R, HAGENMAIER H. Mechanism of the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from chlorophenols in gas phase reactions[J]. Chemosphere, 1999, 38(3): 529-549.
    [66] ROMANOV A N, BYKHOVSKⅡ M Y, RUFOV Y N, et al. Thermal generation of singlet oxygen on Zeolite ZSM-5[J]. Kinetics & Catalysis, 2000, 41(6): 782-786.
    [67] SHAUB W M, TSANG W. Dioxin formation in incinerators[J]. Environmental Science & Technology, 1983, 17(12): 721-730.
    [68] BABUSHOK V I, TSANG W. Gas-phase mechanism for dioxin formation[J]. Chemosphere, 2003, 51(10): 1023-1029.
    [69] KHACHATRYAN L, ASATRYAN R, DELLINGER B. An elementary reaction kinetic model of the gas-phase formation of polychlorinated dibenzofurans from chlorinated phenols[J]. Journal of Physical Chemistry A, 2011, 108(44): 9567-9572.
    [70] XU F, WANG H, ZHANG Q, et al. Kinetic properties for the complete series reactions of chlorophenols with OH radicals-relevance for dioxin formation[J]. Environmental Science & Technology, 2010, 44(4): 1399-1404.
    [71] ALTARAWNEH M, DLUGOGORSKI B Z, KENNEDY E M, et al. Quantum chemical and kinetic study of formation of 2-chlorophenoxy radical from 2-chlorophenol: unimolecular decomposition and bimolecular reactions with H, OH, Cl, and O2[J]. Journal of Physical Chemistry A, 2008, 112(16): 3680-3692.
    [72] ZHANG Q, LI S, QU X, et al. A quantum mechanical study on the formation of PCDD/Fs from 2-chlorophenol as precursor[J]. Environmental Science & Technology, 2008, 42(19): 7301-7308.
    [73] ALTARAWNEH M, DLUGOGORSKI B Z, KENNEDY E M, et al. Quantum chemical investigation of formation of polychlorodibenzo-p-dioxins and dibenzofurans from oxidation and pyrolysis of 2-Chlorophenol[J]. The Journal of Physical Chemistry A, 2007, 111(13): 2563-2573.
    [74] ZHANG Q, YU W, ZHANG R, et al. Quantum chemical and kinetic study on dioxin formation from the 2,4,6-TCP and 2,4-DCP precursors[J]. Environmental Science & Technology, 2010, 44(9): 3395-3403.
    [75] 屈小辉. 量子化学方法研究典型有毒有机污染物的形成与降解机理[D]. 济南:山东大学, 2009. QU X H. The Formation and degradation mechanisms of the typical toxic organic pollutants studied with quantum chemical methods[D]. Jinan: Shandong University, 2009.(in Chinese).
    [76] ZHAO Z, NI M, LI X, et al. PCDD/F formation during thermal desorption of chlorobenzene contaminated soil[J]. Environmental Science & Pollution Research, 2017, 24(29): 23321-23330.
    [77] BUSER H R. Formation of polychlorinated dibenzofurans (PCDFs) from the pyrolysis of individual PCB isomers[J]. Chemosphere, 1979, 8(3): 157-174.
    [78] 李善青. 焚烧过程二英形成机理的密度泛函研究[D].济南:山东大学, 2015. LI S Q. Density functional theory study on the formation mechanism of dioxins in incineration[D]. Jinan: Shandong University, 2015.(in Chinese).
    [79] LI S, ZHANG Q. Mechanistic studies on the dibenzofuran and dibenzo-p-dioxin formation reactions from o-benzyne precursor[J]. Computational & Theoretical Chemistry, 2015, 1061(3): 80-88.
    [80] HOU S, ALTARAWNEH M, KENNEDY E M, et al. Formation of polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/F) from oxidation of 4,4'-dichlorobiphenyl[J]. Proceedings of the Combustion Institute, 2018, 21(58): 1-8.
  • 加载中
计量
  • 文章访问数:  3935
  • HTML全文浏览数:  3890
  • PDF下载数:  121
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-11-01
  • 刊出日期:  2019-04-15
李雁, 郭昌胜, 侯嵩, 高建峰, 徐建. 固体废物焚烧过程中二噁英的排放和生成机理研究进展[J]. 环境化学, 2019, 38(4): 746-759. doi: 10.7524/j.issn.0254-6108.2018110103
引用本文: 李雁, 郭昌胜, 侯嵩, 高建峰, 徐建. 固体废物焚烧过程中二噁英的排放和生成机理研究进展[J]. 环境化学, 2019, 38(4): 746-759. doi: 10.7524/j.issn.0254-6108.2018110103
LI Yan, GUO Changsheng, HOU Song, GAO Jianfeng, XU Jian. The formation mechanisms and emission of dioxin during the solid waste incineration process[J]. Environmental Chemistry, 2019, 38(4): 746-759. doi: 10.7524/j.issn.0254-6108.2018110103
Citation: LI Yan, GUO Changsheng, HOU Song, GAO Jianfeng, XU Jian. The formation mechanisms and emission of dioxin during the solid waste incineration process[J]. Environmental Chemistry, 2019, 38(4): 746-759. doi: 10.7524/j.issn.0254-6108.2018110103

固体废物焚烧过程中二噁英的排放和生成机理研究进展

  • 1.  中北大学理学院, 太原, 030051;
  • 2.  中国环境科学研究院环境基准与风险评估国家重点实验室, 北京, 100012
基金项目:

国家自然科学基金(41703122)资助.

摘要: 二噁英作为一类持久性有机污染物,因其具有强毒性和生物累积性而被广泛关注,为减少二噁英对生态环境造成的影响,研究环境中二噁英的来源及生成机理尤为重要.固体废物焚烧是二噁英在环境中的主要来源之一.本文综述了固体废物焚烧过程中产生二噁英的浓度水平,着重分析了不同因素对二噁英生成情况的影响,同时结合近年来量子化学在研究燃烧过程中二噁英生成机理方面的应用,系统阐述了典型二噁英前驱物燃烧生成二噁英的反应路径,并对深入研究固体废物焚烧中产生的二噁英对周边环境的危害提出了建议.

English Abstract

参考文献 (80)

返回顶部

目录

/

返回文章
返回