绿藻胞外聚合物对无机砷生物累积特征的影响

黄飞, 周昉, 姜舒扬, 张建英. 绿藻胞外聚合物对无机砷生物累积特征的影响[J]. 环境化学, 2019, 38(5): 1021-1027. doi: 10.7524/j.issn.0254-6108.2018062301
引用本文: 黄飞, 周昉, 姜舒扬, 张建英. 绿藻胞外聚合物对无机砷生物累积特征的影响[J]. 环境化学, 2019, 38(5): 1021-1027. doi: 10.7524/j.issn.0254-6108.2018062301
HUANG Fei, ZHOU Fang, JIANG Shuyang, ZHANG Jianying. Effects of extracellular polymeric substances on the bioaccumulation of inorganic arsenic by green microalgae[J]. Environmental Chemistry, 2019, 38(5): 1021-1027. doi: 10.7524/j.issn.0254-6108.2018062301
Citation: HUANG Fei, ZHOU Fang, JIANG Shuyang, ZHANG Jianying. Effects of extracellular polymeric substances on the bioaccumulation of inorganic arsenic by green microalgae[J]. Environmental Chemistry, 2019, 38(5): 1021-1027. doi: 10.7524/j.issn.0254-6108.2018062301

绿藻胞外聚合物对无机砷生物累积特征的影响

  • 基金项目:

    国家自然科学基金(21477103)资助.

Effects of extracellular polymeric substances on the bioaccumulation of inorganic arsenic by green microalgae

  • Fund Project: Supported by the National Natural Science Foundation of China (21477103).
  • 摘要: 绿藻对无机污染物的净化作用受其自分泌胞外聚合物EPS影响.以EPS释放量高的蛋白核小球藻为绿藻代表,通过24 h短期As(Ⅲ)和As(V)的模拟水体暴露实验,研究绿藻对无机砷的生物累积特征及EPS影响.结果表明,在0—40 mg·L-1 As(Ⅲ)和As(V)暴露浓度范围,蛋白核小球藻细胞内的砷累积速率随暴露浓度的增加而升高,其动力学拟合结果符合Michaelis-Menten酶促反应动力学方程.EPS与无机砷存在界面相互作用影响,无机砷暴露浓度升高可促进小球藻EPS分泌,EPS与砷累积速率之间呈现正相关线性关系(R2 > 0.900),主要影响成分是溶解态EPS.完整藻细胞与脱除胞外聚合物的活体细胞相比,As(Ⅲ)、As(V)暴露的最大吸附累积量分别增加30.6%和14.2%,而最大胞内累积量降低49.0%和31.0%.EPS与无机砷的微界面交互作用影响绿藻对砷污染的净化修复.
  • 加载中
  • [1] ZHU Y G, YOSHINAGA M, ZHAO F J, et al. Earth abides arsenic biotransformations[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1):443-467.
    [2] QIN J, LEHR C R, YUAN C G, et al. Biotransformation of arsenic by a yellowstone thermoacidophilic eukaryotic alga[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(13):5213-5217.
    [3] BAHAR M M, MEGHARAJ M, and NAIDU R. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp[J]. Environmental Science and Pollution Research, 2016, 23(3):2663-2668.
    [4] BAHAR, MEGHARAJ, and NAIDU. Toxicity, transformation and accumulation of inorganic arsenic species:In a microalga Scenedesmus sp isolated from soil[J]. Journal of Applied Phycology, 2013, 25(3):913-917.
    [5] WANG N X, LI Y, DENG X H, et al. Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes[J]. Water Research, 2013, 47(7):2497-2506.
    [6] RAHMAN M A, HASEGAWA H, and LIM R P. Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain[J]. Environmental Research, 2012, 116(116):118-135.
    [7] WANG Y, ZHANG C H, ZHENG Y H, et al. Bioaccumulation kinetics of arsenite and arsenate in Dunaliella Salina under different phosphate regimes[J]. Environmental Science and Pollution Research, 2017, 24(26):21213-21221.
    [8] PAL A, PAUL A K. Microbial extracellular polymeric substances:Central elements in heavy metal bioremediation[J]. Indian Journal of Microbiology, 2008, 48(1):49-64.
    [9] XIAO R, ZHENG Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications[J]. Biotechnology Advances, 2016, 34(7):1225-1244.
    [10] OZTURK S, ASLIM B. Relationship between chromium(VI) resistance and extracellular polymeric substances (EPS) concentration by some cyanobacterial isolates[J]. Environmental Science and Pollution Research, 2008, 15(6):478-480.
    [11] CHEN H W, HUANG W J, WU T H, et al. Effects of extracellular polymeric substances on the bioaccumulation of mercury and its toxicity toward the cyanobacterium Microcystis Aeruginosa[J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2014, 49(12):1370-1379.
    [12] LEVY J L, STAUBER J L, ADAMS M S, et al. Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp and Monoraphidium Arcuatum)[J]. Environmental Toxicology and Chemistry, 2005, 24(10):2630-2639.
    [13] MIYASHITA S, SHIMOYA M, KAMIDATE Y, et al. Rapid determination of arsenic species in freshwater organisms from the arsenic-rich Hayakawa River in Japan using HPLC-ICP-MS[J]. Chemosphere, 2009, 75(8):1065-1073.
    [14] CHU H, HONG Y, TAN X, et al. Extraction procedure optimization and the characteristics of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) from Chlorella Pyrenoidosa[J]. Colloids & Surfaces B Biointerfaces, 2015, 125:238-246.
    [15] ZHOU K J, HU Y, ZHANG L Q, et al. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae[J]. Scientific Reports, 2016, 6, 32998.
    [16] ROSEN B P, LIU Z J. Transport pathways for arsenic and selenium:A minireview[J]. Environment International, 2009, 35(3):512-515.
    [17] WANG N X, HUANG B, XU S, et al. Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas Reinhardtii[J]. Aquatic Toxicology, 2014, 157(7):167-174.
    [18] VRIENS B, BEHRA R, VOEGELIN A, et al. Selenium uptake and methylation by the microalga Chlamydomonas Reinhardtii[J]. Environmental Science & Technology, 2016, 50(2):711-720.
    [19] SHENG G P, YU H Q, and LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems:A review[J]. Biotechnology Advances, 2010, 28(6):882-894.
    [20] COMTE S, GUIBAUD G, and BAUDU M. Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type:Soluble or bound[J]. Process Biochemistry, 2006, 41(4):815-823.
    [21] PAN X L, LIU J, ZHANG D Y, et al. Binding of dicamba to soluble and bound extracellular polymeric substances (EPS) from aerobic activated sludge:A fluorescence quenching study[J]. Journal of Colloid and Interface Science, 2010, 345(2):442-447.
    [22] MAEDA S, NAKASHIMA S, TAKESHITA T, et al. Bioaccumulation of arsenic by freshwater algae and the application to the removal of inorganic arsenic from an aqueous phase. Part Ⅱ. By Chlorella Vulgaris isolated from arsenic-polluted environment[J]. Separation Science & Technology, 1985, 20(2-3):153-161.
    [23] ZHU Y L, ZAYED A M, QIAN J H, et al. Phytoaccumulation of trace elements by wetland plants:Ⅱ. Water hyacinth[J]. Journal of Environmental Quality, 1999, 28(1):339-344.
    [24] WANG Y, WANG S, XU P, et al. Review of arsenic speciation, toxicity and metabolism in microalgae[J]. Reviews in Environmental Science & Bio/technology, 2015, 14(3):427-451.
  • 加载中
计量
  • 文章访问数:  1403
  • HTML全文浏览数:  1393
  • PDF下载数:  91
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-06-23
  • 刊出日期:  2019-05-15
黄飞, 周昉, 姜舒扬, 张建英. 绿藻胞外聚合物对无机砷生物累积特征的影响[J]. 环境化学, 2019, 38(5): 1021-1027. doi: 10.7524/j.issn.0254-6108.2018062301
引用本文: 黄飞, 周昉, 姜舒扬, 张建英. 绿藻胞外聚合物对无机砷生物累积特征的影响[J]. 环境化学, 2019, 38(5): 1021-1027. doi: 10.7524/j.issn.0254-6108.2018062301
HUANG Fei, ZHOU Fang, JIANG Shuyang, ZHANG Jianying. Effects of extracellular polymeric substances on the bioaccumulation of inorganic arsenic by green microalgae[J]. Environmental Chemistry, 2019, 38(5): 1021-1027. doi: 10.7524/j.issn.0254-6108.2018062301
Citation: HUANG Fei, ZHOU Fang, JIANG Shuyang, ZHANG Jianying. Effects of extracellular polymeric substances on the bioaccumulation of inorganic arsenic by green microalgae[J]. Environmental Chemistry, 2019, 38(5): 1021-1027. doi: 10.7524/j.issn.0254-6108.2018062301

绿藻胞外聚合物对无机砷生物累积特征的影响

  • 1.  浙江大学环境与资源学院, 杭州, 310058;
  • 2.  浙江省有机污染过程与控制重点实验室, 杭州, 310058;
  • 3.  国家级环境与资源实验教学示范中心 (浙江大学), 杭州, 310058
基金项目:

国家自然科学基金(21477103)资助.

摘要: 绿藻对无机污染物的净化作用受其自分泌胞外聚合物EPS影响.以EPS释放量高的蛋白核小球藻为绿藻代表,通过24 h短期As(Ⅲ)和As(V)的模拟水体暴露实验,研究绿藻对无机砷的生物累积特征及EPS影响.结果表明,在0—40 mg·L-1 As(Ⅲ)和As(V)暴露浓度范围,蛋白核小球藻细胞内的砷累积速率随暴露浓度的增加而升高,其动力学拟合结果符合Michaelis-Menten酶促反应动力学方程.EPS与无机砷存在界面相互作用影响,无机砷暴露浓度升高可促进小球藻EPS分泌,EPS与砷累积速率之间呈现正相关线性关系(R2 > 0.900),主要影响成分是溶解态EPS.完整藻细胞与脱除胞外聚合物的活体细胞相比,As(Ⅲ)、As(V)暴露的最大吸附累积量分别增加30.6%和14.2%,而最大胞内累积量降低49.0%和31.0%.EPS与无机砷的微界面交互作用影响绿藻对砷污染的净化修复.

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回