利用靶器官毒性剂量法(TTD)和证据权重分析法(WOE)评估固化飞灰中重金属非致癌健康风险

刘丽君, 韩静磊, 钱益斌, 张宗尧, 郭庶. 利用靶器官毒性剂量法(TTD)和证据权重分析法(WOE)评估固化飞灰中重金属非致癌健康风险[J]. 环境化学, 2019, 38(5): 1014-1020. doi: 10.7524/j.issn.0254-6108.2018062002
引用本文: 刘丽君, 韩静磊, 钱益斌, 张宗尧, 郭庶. 利用靶器官毒性剂量法(TTD)和证据权重分析法(WOE)评估固化飞灰中重金属非致癌健康风险[J]. 环境化学, 2019, 38(5): 1014-1020. doi: 10.7524/j.issn.0254-6108.2018062002
LIU Lijun, HAN Jinglei, QIAN Yibin, ZHANG Zongyao, GUO Shu. Assessment of heavy metal non-carcinogenic health risk in solidified fly ash using TTD and WOE methods[J]. Environmental Chemistry, 2019, 38(5): 1014-1020. doi: 10.7524/j.issn.0254-6108.2018062002
Citation: LIU Lijun, HAN Jinglei, QIAN Yibin, ZHANG Zongyao, GUO Shu. Assessment of heavy metal non-carcinogenic health risk in solidified fly ash using TTD and WOE methods[J]. Environmental Chemistry, 2019, 38(5): 1014-1020. doi: 10.7524/j.issn.0254-6108.2018062002

利用靶器官毒性剂量法(TTD)和证据权重分析法(WOE)评估固化飞灰中重金属非致癌健康风险

  • 基金项目:

    广州市污染防治新技术、新工艺开发项目(PM-zx022-201507-027)资助.

Assessment of heavy metal non-carcinogenic health risk in solidified fly ash using TTD and WOE methods

  • Fund Project: Supported by the Development Projects of New Technologies for Prevention and Control of Pollution in Guangzhou(PM-zx022-201507-027)
  • 摘要: 传统的健康风险评价方法未考虑重金属对多种靶器官的影响及重金属间的相互作用,不能反映重金属真实的风险情况.ATSDR的靶器官毒性剂量法(TTD)和EPA的证据权重分析法(WOE)分别将重金属能够产生效应的靶器官与重金属间的相互作用引入评价过程,对传统评价方法进行修正.基于此,本研究采用了TTD法和WOE法评估了生活垃圾焚烧厂固化飞灰中重金属的非致癌健康风险,并将其与传统的非致癌健康风险评价方法进行比较.结果表明,传统的非致癌健康风险评价方法得出的HI值为0.2084,经TTD法和WOE法修正后的HI值分别为0.5165和0.6717,修正后风险大于传统方法所预测风险,更严格的反映固化飞灰对工人健康的真实风险.
  • 加载中
  • [1] ZHANG M W, ZHANG S K, ZHANG Z Q, et al. Influence of a municipal solid waste incinerator on ambient air PCDD/F levels:A comparison of running and non-running periods[J]. Science of the total Environment, 2014, 491-492:34-41.
    [2] TANG Z W, HUANG Q F, YANG Y F. PCDD/Fs in fly ash from waste incineration in China:A need for effective risk management[J]. Environmental Science & Technology, 2013, 47(11):5520-5521.
    [3] KAKUTA Y, MATSUTO T, TOJO Y, et al. Characterization of residual carbon influencing on de novo synthesis of PCDD/Fs in MSWI fly ash[J]. Chemosphere, 2007, 68(5):880-886.
    [4] TIAN H Z, GAO J J, LU L, et al. Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal solid waste incineration in China[J]. Environmental Science & Technology, 2012, 46(18):10364-10371.
    [5] XIONG Z H L, MIN. HU, DA WEI. Physicochemical and solidification characteristics of municipal solid wastes incineration (MSWI) fly ash from Guangdong Province[J]. Environment Chemistry, 2007, 33(7):1173-1179.
    [6] LEUNG A O, DUZGOREN-AYDIN N S, CHEUNG K, et al. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China[J]. Environmental Science & Technology, 2008, 42(7):2674-2680.
    [7] SAMOVA S, PATEL C N, DOCTOR H, et al. The effect of bisphenol A on testicular steroidogenesis and its amelioration by quercetin:An in vivo and in silico approach[J]. Toxicology Research, 2018, 7(1):22-31.
    [8] SUN J, HU J, ZHU G Z, et al. PCDD/Fs distribution characteristics and health risk assessment in fly ash discharged from MSWIs in China[J]. Ecotoxicology and Environmental Safety, 2017, 139:83-88.
    [9] ZHOU J Z, WU S M, PAN Y, et al. Enrichment of heavy metals in fine particles of municipal solid waste incinerator (MSWI) fly ash and associated health risk[J]. Waste Management, 2015, 43:239-246.
    [10] US ATSDR. Guidance Manual for the Assessment of joint toxic action of chemical mixtures[EB/OL].[2018-7-1]. https://www.atsdr.cdc.gov/interactionprofiles/ipga.html.
    [11] US EPA. Supplementary guidance for conducting health risk assessment of chemical mixtures[EB/OL].[2018-7-1]. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=20533.
    [12] WILBUR S B, HANSEN H, POHL H, et al. Using the ATSDR guidance manual for the Assessment of joint toxic action of chemical mixtures[J]. Environmental Toxicology and Pharmacology, 2004, 18(3):223-230.
    [13] CAO H B, CHEN J J, ZHANG J, et al. Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China[J]. Journal of Environmental Sciences, 2010, 22(11):1792-1799.
    [14] CAO H B, ZHU H Y, JIA Y J, et al. Heavy metals in food crops and the associated potential for combined health risk due to interactions between metals[J]. Human and Ecological Risk Assessment:An International Journal, 2011, 17(3):700-711.
    [15] POHL H R, MUMTAZ M M, SCINICARIELLO F, et al. Binary weight-of-evidence evaluations of chemical interactions——15 years of experience[J]. Regulatory Toxicology and Pharmacology, 2009, 54(3):264-271.
  • 加载中
计量
  • 文章访问数:  1870
  • HTML全文浏览数:  1859
  • PDF下载数:  88
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-06-20
  • 刊出日期:  2019-05-15
刘丽君, 韩静磊, 钱益斌, 张宗尧, 郭庶. 利用靶器官毒性剂量法(TTD)和证据权重分析法(WOE)评估固化飞灰中重金属非致癌健康风险[J]. 环境化学, 2019, 38(5): 1014-1020. doi: 10.7524/j.issn.0254-6108.2018062002
引用本文: 刘丽君, 韩静磊, 钱益斌, 张宗尧, 郭庶. 利用靶器官毒性剂量法(TTD)和证据权重分析法(WOE)评估固化飞灰中重金属非致癌健康风险[J]. 环境化学, 2019, 38(5): 1014-1020. doi: 10.7524/j.issn.0254-6108.2018062002
LIU Lijun, HAN Jinglei, QIAN Yibin, ZHANG Zongyao, GUO Shu. Assessment of heavy metal non-carcinogenic health risk in solidified fly ash using TTD and WOE methods[J]. Environmental Chemistry, 2019, 38(5): 1014-1020. doi: 10.7524/j.issn.0254-6108.2018062002
Citation: LIU Lijun, HAN Jinglei, QIAN Yibin, ZHANG Zongyao, GUO Shu. Assessment of heavy metal non-carcinogenic health risk in solidified fly ash using TTD and WOE methods[J]. Environmental Chemistry, 2019, 38(5): 1014-1020. doi: 10.7524/j.issn.0254-6108.2018062002

利用靶器官毒性剂量法(TTD)和证据权重分析法(WOE)评估固化飞灰中重金属非致癌健康风险

  • 1.  环境保护部华南环境科学研究所, 广州, 510655;
  • 2.  海南省环境科学研究院, 海口, 570206
基金项目:

广州市污染防治新技术、新工艺开发项目(PM-zx022-201507-027)资助.

摘要: 传统的健康风险评价方法未考虑重金属对多种靶器官的影响及重金属间的相互作用,不能反映重金属真实的风险情况.ATSDR的靶器官毒性剂量法(TTD)和EPA的证据权重分析法(WOE)分别将重金属能够产生效应的靶器官与重金属间的相互作用引入评价过程,对传统评价方法进行修正.基于此,本研究采用了TTD法和WOE法评估了生活垃圾焚烧厂固化飞灰中重金属的非致癌健康风险,并将其与传统的非致癌健康风险评价方法进行比较.结果表明,传统的非致癌健康风险评价方法得出的HI值为0.2084,经TTD法和WOE法修正后的HI值分别为0.5165和0.6717,修正后风险大于传统方法所预测风险,更严格的反映固化飞灰对工人健康的真实风险.

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回