应用生物配体模型研究阳离子及pH值对水稻锌毒性的影响

李晓敏, 胡莹, 黄益宗, 刘云霞, 李季. 应用生物配体模型研究阳离子及pH值对水稻锌毒性的影响[J]. 环境化学, 2017, 36(8): 1724-1734. doi: 10.7524/j.issn.0254-6108.2017032005
引用本文: 李晓敏, 胡莹, 黄益宗, 刘云霞, 李季. 应用生物配体模型研究阳离子及pH值对水稻锌毒性的影响[J]. 环境化学, 2017, 36(8): 1724-1734. doi: 10.7524/j.issn.0254-6108.2017032005
LI Xiaomin, HU Ying, HUANG Yizong, LIU Yunxia, LI Ji. Effects of cations and pH in nutrient solution on zinc toxicity to rice (Oryza sativa) root elongation by the biotic ligand model[J]. Environmental Chemistry, 2017, 36(8): 1724-1734. doi: 10.7524/j.issn.0254-6108.2017032005
Citation: LI Xiaomin, HU Ying, HUANG Yizong, LIU Yunxia, LI Ji. Effects of cations and pH in nutrient solution on zinc toxicity to rice (Oryza sativa) root elongation by the biotic ligand model[J]. Environmental Chemistry, 2017, 36(8): 1724-1734. doi: 10.7524/j.issn.0254-6108.2017032005

应用生物配体模型研究阳离子及pH值对水稻锌毒性的影响

  • 基金项目:

    国家自然科学基金(21377152)资助.

Effects of cations and pH in nutrient solution on zinc toxicity to rice (Oryza sativa) root elongation by the biotic ligand model

  • Fund Project: Supported by the National Nature Science Fund Project of China (21377152).
  • 摘要: 采用室内水培实验, 通过改变溶液中pH值及主要阳离子(Ca2+、Mg2+、Na+和K+)浓度研究锌对水稻的毒性,建立了Zn对水稻根伸长毒性的生物配体模型(Biotic ligand model,BLM).研究结果表明,增加Ca2+、Mg2+和H+的活度均可以减缓Zn2+对水稻根伸长的毒性,而增加Na+、K+的活度对Zn2+的毒性影响不大;在低pH(4.5-6.0)条件下,主要是Zn2+对水稻根伸长产生毒性,在高pH(6.5-8.0)条件下,Zn2+和ZnOH+是主要的致毒形态.根据生物配体模型理论估算的Zn2+、ZnOH+、Ca2+、Mg2+和H+的生物配体络合的平衡常数分别为:lgKZnBL=4.97、lgKZnOHBL=5.30、lgKCaBL=2.96、lgKMgBL=3.30和lgKHBL=5.21.根据各平衡常数计算可得,当Zn结合水稻的生物配体位点达到73%之后,水稻根伸长的抑制率达50%(即f50=73%).利用上述参数建立的生物配体模型预测的EC50值均在实测值的2倍变化范围之内,表明生物配体模型可以有效地预测锌对水稻根伸长的急性毒性.
  • 加载中
  • [1] 刘春早, 黄益宗, 雷鸣,等. 湘江流域土壤重金属污染及其生态环境风险评价[J]. 环境科学, 2012, 33(1):263-268.

    LIU C Z, HUANG Y Z, LEI M, et al. Soil contamination and assessment of heavy metals of Xiangjiang River basin[J]. Environmental Science, 2012, 33(1):263-268(in Chinese).

    [2] 朱桂芬, 张春燕, 王建玲,等. 新乡市寺庄顶污灌区土壤及小麦重金属污染特征的研究[J]. 农业环境科学学报, 2009, 28(2):263-268.

    ZHU G F, ZHANG C Y, WAGN J L, et al. Investigation of heavy metal pollution in soil and wheat grains in sewage-irrigated area in Sizhuangding Xinxiang City[J]. Journal of Agro-Environment Science, 2009, 28(2):263-268(in Chinese).

    [3] PRASAD K, PARDHA S P, SHARMILA P. Concerted action of antioxidant enzyme and curtailed growth under zinc toxicity in Brassica juncea[J]. Environmental and Experimental Botany, 1991, 42(1):1-10.
    [4] EBBS S D, KOCHIAN L V. Toxicity of zinc and copper to Brassica species:Implications for phytoremediation[J]. Journal of Environmental Quality, 1991, 26(3):776-781.
    [5] CHANG H B, LIN C W, HUNAG H J. Zinc-induced cell death in rice (Oryza sativa L.) roots[J]. Plant Growth Regulation, 2005, 46(3):261-266.
    [6] NIYOGI S, WOOD C M. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals[J]. Environmental Science & Technology, 2004, 38(23):6177-6192.
    [7] THAKALI S, ALLEN H E, DI TORO D M, et al. A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils[J]. Environmental Science & Technology, 2006a, 40(22):7085-7093.
    [8] THAKALI S, ALLEN H E, DI TORO D M, et al. Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil[J]. Environmental Science & Technology, 2006b, 40(22):7094-7100.
    [9] 王学东, 马义兵, 华珞, 等.环境中金属生物有效性的预测模型型研究进展[J]. 生态毒理学报, 2006, 1(3):193-202.

    WAGN X D, MA Y B, HUA L, et al. Advances in biotic ligand model to predict the bioavailability of metals in environments[J]. Asian Journal of Ecotoxicology, 2006, 1(3):193-202(in Chinese).

    [10] VAN G C, RADEMAKER M, VAN S N. Biogeodynamics of pollutants in soils and sediments[M]. Springer Berlin Heidelberg, 1995, Berlin.
    [11] VAN G C. Ecological risk assessment of contaminants in soil[M]. Springer US, 1997, New York.
    [12] CHENG T, ALLEN H E. Prediction of uptake of copper from solution by lettuce (Lactuca sativa Romance)[J]. Environmental Toxicology and Chemistry, 2001, 20(11):2544-2551.
    [13] WANG X D, LI B, MA Y B, et al. Development of a biotic ligand model for acute zinc toxicity to barley root elongation[J]. Ecotoxicology and Environmental Safety, 2010, 73(6):1272-1278.
    [14] LOCK K, DE SCHAMPHELAERE K C, BECAUS S, et al. Development and validation of a terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley (Hordeum vulgare)[J]. Environmental Pollution, 2007a, 147(3):626-633.
    [15] LOCK K, VAN E H, DE SCHAMPHELAERE K C, et al. Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare)[J]. Chemosphere, 2007b, 66(7):1346-1352.
    [16] ARDESTANI M, VERWEIJ R, VAN G C. The influence of calcium and pH on the uptake and toxicity of copper in Folsomia candida exposed to simplified soil solutions[J]. Journal of Hazardous Materials, 2013, 261(15):405-413.
    [17] 林蕾, 陈世宝, 程旺大, 等. 基于不同终点测定土壤中Zn的毒性阈值及其田间验证[J]. 农业环境科学学报, 2013, 32(3):548-555.

    LIN L, CHEN S B, CHENG W D, et al. Toxicity thresholds (ECx) of Zn in soils as determined by different endpoints and its validations in fields[J]. Journal of Agro-Environment Science, 2013, 32(3):548-555(in Chinese).

    [18] 魏威, 梁东丽, 陈世宝. 土壤中外源锌对不同植物毒性的敏感性分布[J]. 生态学杂志, 2012, 31(3):538-543.

    WEI W, LIANG D L, CHEN S B. Plant species sensitivity distribution to the phytotoxicity of soil exogenous zinc[J]. Chinese Journal of Ecology, 2012, 31(3):538-543(in Chinese).

    [19] OORTS K, GHESQULERE U, SWINNEN K, et al. Soil properties affecting the toxicity of CuCl2 and NiCl2 for soil microbial processes in freshly spiked soils[J]. Environmental Toxicology and Chemistry, 2006, 25(3):836-844.
    [20] LI, B, ZHANG X, WANG X D, et al. Refining a biotic ligand model for nickel toxicity to barley root elongation in solution culture[J]. Ecotoxicology and Environmental Safety, 2009, 72(6):1760-1766.
    [21] ANTUNES P M, KREAGER N J. Development of the terresrial biotic ligand ligand model for predicting nickel toxicity to barley (Hordeum vulgare):Ion effects at low pH[J]. Environmental Toxicology and Chemistry, 2009, 28(8):1704-1710.
    [22] ISO/11269-1. Soil quality-determination of the effects of pollutants on soil flora-Part 1:Method for the measurement of inhibition of root growth[S]. 2012.
    [23] LI B, ZHANG H, MA Y B, et al. Influences of soil properties and leaching on nickel toxicity to barley root elongation[J]. Ecotoxicology and Environmental Safety, 2011, 74(3):459-466.
    [24] DE SCHAMPHELAERE K A, JANSSEN C R. A biotic ligand model predicting acute copper toxicity for Daphnia magna:The effects of calcium, magnesium, sodium, potassium, and pH[J]. Environmental Science & Technology, 2002, 36(1):48-54.
    [25] PEDLER J F, KINRAIDE T B, PARKER D R. Zinc rhizotoxicity in wheat and radish is alleviated by micromolar levels of magnesium and potassium in solution culture[J]. Plant and Soil, 2004, 259(1-2):191-199.
    [26] LI L Z, ZHOU D M, LUO X S, et al. Effect of major cations and pH on the acute toxicity of cadmium to the earthworm Eisenia fetida:Implications for the biotic ligand model approach[J]. Archives of Environmental Contamination and Toxicology, 2008, 55(1):70-77.
    [27] DEGRYSE F, SHAHBAZI A, VERHEYEN L, et al. Diffusion limitations in root uptake of cadmium and zinc, but not nickel, and resulting bias in the michaelis constant[J]. Plant Physiology, 2012, 160(2):1097-1109.
    [28] LE T T Y, VIGVER M G, HENDRIKS A J, et al. Modeling toxicity of binary metal mixtures (Cu2+-Ag+, Cu2+-Zn2+) to lettuce, Lactuca sativa, with the biotic ligand model[J]. Environmental Toxicology and Chemistry, 2013, 32(1):137-143.
    [29] WANG P, DE SCHAMPHELAERE K A, KOPITTKE P M, et al. Development of an electrostatic model predicting copper toxicity to plants[J]. Journal of Experimental Botany, 2012, 63(2):659-668.
    [30] ROGERS J T, WOOD C M. Characterization of branchial lead-calcium interaction in the freshwater rainbow trout Oncorhynchus mykiss[J]. Journal of Experimental Biology, 2004, 207(5):813-825.
    [31] CHOU T S, CHAO Y Y, HUANG W D, et al. Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings[J]. Journal of Plant Physiology, 2011, 168(10):1021-1030.
    [32] WANG X D, MA Y B, HUA L, et al. Identificaiton of hydroxyl copper toxicity to barley (Hordeum vulgare) root elongation in solution culture[J]. Environmental Toxicology and Chemistry, 2009, 28(3):662-667.
    [33] STANTORE R C, MATHEW R, PAQUIN P R, et al. Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and daphnia magna[J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2002, 133(1-2):271-285.
    [34] CLIFFORD M, MCGEER J C. Development of a biotic ligand model for the acute toxicity of zinc to Daphnia pulex in soft waters[J]. Aquatic Toxicology, 2009, 91(1):26-32.
    [35] 王学东, 马义兵, 华珞, 等.铜对大麦(Hordeum vulgare)的急性毒性预测模型-生物配体模型[J]. 环境科学学报, 2008, 28(8):1704-1712.

    WANG X D, MA Y B, HUA L, et al. Development of biotic ligand model (BLM) predicting copper acute toxicity to barley (Hordeum vulgare)[J]. Acta Scientiae Circumstantiae, 2008, 28(8):1704-1712(in Chinese).

    [36] LUO X S, LI L Z, ZHOU D M. Effect of cations on copper toxicity to wheat root:Implications for the biotic ligand model[J]. Chemosphere, 2008,73(3):401-406.
  • 加载中
计量
  • 文章访问数:  1190
  • HTML全文浏览数:  1141
  • PDF下载数:  344
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-03-20
  • 刊出日期:  2017-08-15

应用生物配体模型研究阳离子及pH值对水稻锌毒性的影响

  • 1.  中国科学院生态环境研究中心, 北京, 100085;
  • 2.  农业部环境保护科研监测所, 天津, 300191
基金项目:

国家自然科学基金(21377152)资助.

摘要: 采用室内水培实验, 通过改变溶液中pH值及主要阳离子(Ca2+、Mg2+、Na+和K+)浓度研究锌对水稻的毒性,建立了Zn对水稻根伸长毒性的生物配体模型(Biotic ligand model,BLM).研究结果表明,增加Ca2+、Mg2+和H+的活度均可以减缓Zn2+对水稻根伸长的毒性,而增加Na+、K+的活度对Zn2+的毒性影响不大;在低pH(4.5-6.0)条件下,主要是Zn2+对水稻根伸长产生毒性,在高pH(6.5-8.0)条件下,Zn2+和ZnOH+是主要的致毒形态.根据生物配体模型理论估算的Zn2+、ZnOH+、Ca2+、Mg2+和H+的生物配体络合的平衡常数分别为:lgKZnBL=4.97、lgKZnOHBL=5.30、lgKCaBL=2.96、lgKMgBL=3.30和lgKHBL=5.21.根据各平衡常数计算可得,当Zn结合水稻的生物配体位点达到73%之后,水稻根伸长的抑制率达50%(即f50=73%).利用上述参数建立的生物配体模型预测的EC50值均在实测值的2倍变化范围之内,表明生物配体模型可以有效地预测锌对水稻根伸长的急性毒性.

English Abstract

参考文献 (36)

目录

/

返回文章
返回