应用生物配体模型研究阳离子及pH值对水稻锌毒性的影响
Effects of cations and pH in nutrient solution on zinc toxicity to rice (Oryza sativa) root elongation by the biotic ligand model
-
摘要: 采用室内水培实验, 通过改变溶液中pH值及主要阳离子(Ca2+、Mg2+、Na+和K+)浓度研究锌对水稻的毒性,建立了Zn对水稻根伸长毒性的生物配体模型(Biotic ligand model,BLM).研究结果表明,增加Ca2+、Mg2+和H+的活度均可以减缓Zn2+对水稻根伸长的毒性,而增加Na+、K+的活度对Zn2+的毒性影响不大;在低pH(4.5-6.0)条件下,主要是Zn2+对水稻根伸长产生毒性,在高pH(6.5-8.0)条件下,Zn2+和ZnOH+是主要的致毒形态.根据生物配体模型理论估算的Zn2+、ZnOH+、Ca2+、Mg2+和H+的生物配体络合的平衡常数分别为:lgKZnBL=4.97、lgKZnOHBL=5.30、lgKCaBL=2.96、lgKMgBL=3.30和lgKHBL=5.21.根据各平衡常数计算可得,当Zn结合水稻的生物配体位点达到73%之后,水稻根伸长的抑制率达50%(即f50=73%).利用上述参数建立的生物配体模型预测的EC50值均在实测值的2倍变化范围之内,表明生物配体模型可以有效地预测锌对水稻根伸长的急性毒性.Abstract: Acute toxicity of zinc (Zn) to rice (Oryza sativa) root elongation was investigated by changing the pH value and major cation (Ca2+, Mg2+, Na+ and K+) concentrations to develop an appropriate biotic ligand model (BLM) in solution culture. The results showed that the toxicity of Zn2+ was reduced with increasing avtivities of Ca2+, Mg2+ and H+, while the avtivities of Na+ and K+ did not significantly affect the Zn2+ toxicity. The toxicity could be explained mainly by Zn2+ binding to a biotic ligand (BL) at pH from 4.5 to 6.0 and by the joint toxicity of Zn2+ and ZnOH+ at pH from 6.5 to 8.0. According to the biotic ligand model (BLM) concept, the conditional stability constants for the binding of Zn2+, ZnOH+, Ca2+, Mg2+ and H+ to the BL were lgKZnBL=4.97, lgKZnOHBL=5.30, lgKCaBL=2.96, lgKMgBL=3.30 and lgKHBL=5.21, respectively. It was calculated that on average 73% of BL sites were occupied by Zn2+ when the rice root elongation was inhibited by 50% (f50=73%). On the basis of these estimated parameters, the BLM developed in this study could predict EC50 within a factor of 2 of the observed EC50. It was implicated that Zn-BLM could predict reliably the toxicity of Zn to rice.
-
Key words:
- biotic ligand model /
- cations /
- pH /
- rice /
- Zn
-
-
[1] 刘春早, 黄益宗, 雷鸣,等. 湘江流域土壤重金属污染及其生态环境风险评价[J]. 环境科学, 2012, 33(1):263-268. LIU C Z, HUANG Y Z, LEI M, et al. Soil contamination and assessment of heavy metals of Xiangjiang River basin[J]. Environmental Science, 2012, 33(1):263-268(in Chinese).
[2] 朱桂芬, 张春燕, 王建玲,等. 新乡市寺庄顶污灌区土壤及小麦重金属污染特征的研究[J]. 农业环境科学学报, 2009, 28(2):263-268. ZHU G F, ZHANG C Y, WAGN J L, et al. Investigation of heavy metal pollution in soil and wheat grains in sewage-irrigated area in Sizhuangding Xinxiang City[J]. Journal of Agro-Environment Science, 2009, 28(2):263-268(in Chinese).
[3] PRASAD K, PARDHA S P, SHARMILA P. Concerted action of antioxidant enzyme and curtailed growth under zinc toxicity in Brassica juncea[J]. Environmental and Experimental Botany, 1991, 42(1):1-10. [4] EBBS S D, KOCHIAN L V. Toxicity of zinc and copper to Brassica species:Implications for phytoremediation[J]. Journal of Environmental Quality, 1991, 26(3):776-781. [5] CHANG H B, LIN C W, HUNAG H J. Zinc-induced cell death in rice (Oryza sativa L.) roots[J]. Plant Growth Regulation, 2005, 46(3):261-266. [6] NIYOGI S, WOOD C M. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals[J]. Environmental Science & Technology, 2004, 38(23):6177-6192. [7] THAKALI S, ALLEN H E, DI TORO D M, et al. A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils[J]. Environmental Science & Technology, 2006a, 40(22):7085-7093. [8] THAKALI S, ALLEN H E, DI TORO D M, et al. Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil[J]. Environmental Science & Technology, 2006b, 40(22):7094-7100. [9] 王学东, 马义兵, 华珞, 等.环境中金属生物有效性的预测模型型研究进展[J]. 生态毒理学报, 2006, 1(3):193-202. WAGN X D, MA Y B, HUA L, et al. Advances in biotic ligand model to predict the bioavailability of metals in environments[J]. Asian Journal of Ecotoxicology, 2006, 1(3):193-202(in Chinese).
[10] VAN G C, RADEMAKER M, VAN S N. Biogeodynamics of pollutants in soils and sediments[M]. Springer Berlin Heidelberg, 1995, Berlin. [11] VAN G C. Ecological risk assessment of contaminants in soil[M]. Springer US, 1997, New York. [12] CHENG T, ALLEN H E. Prediction of uptake of copper from solution by lettuce (Lactuca sativa Romance)[J]. Environmental Toxicology and Chemistry, 2001, 20(11):2544-2551. [13] WANG X D, LI B, MA Y B, et al. Development of a biotic ligand model for acute zinc toxicity to barley root elongation[J]. Ecotoxicology and Environmental Safety, 2010, 73(6):1272-1278. [14] LOCK K, DE SCHAMPHELAERE K C, BECAUS S, et al. Development and validation of a terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley (Hordeum vulgare)[J]. Environmental Pollution, 2007a, 147(3):626-633. [15] LOCK K, VAN E H, DE SCHAMPHELAERE K C, et al. Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare)[J]. Chemosphere, 2007b, 66(7):1346-1352. [16] ARDESTANI M, VERWEIJ R, VAN G C. The influence of calcium and pH on the uptake and toxicity of copper in Folsomia candida exposed to simplified soil solutions[J]. Journal of Hazardous Materials, 2013, 261(15):405-413. [17] 林蕾, 陈世宝, 程旺大, 等. 基于不同终点测定土壤中Zn的毒性阈值及其田间验证[J]. 农业环境科学学报, 2013, 32(3):548-555. LIN L, CHEN S B, CHENG W D, et al. Toxicity thresholds (ECx) of Zn in soils as determined by different endpoints and its validations in fields[J]. Journal of Agro-Environment Science, 2013, 32(3):548-555(in Chinese).
[18] 魏威, 梁东丽, 陈世宝. 土壤中外源锌对不同植物毒性的敏感性分布[J]. 生态学杂志, 2012, 31(3):538-543. WEI W, LIANG D L, CHEN S B. Plant species sensitivity distribution to the phytotoxicity of soil exogenous zinc[J]. Chinese Journal of Ecology, 2012, 31(3):538-543(in Chinese).
[19] OORTS K, GHESQULERE U, SWINNEN K, et al. Soil properties affecting the toxicity of CuCl2 and NiCl2 for soil microbial processes in freshly spiked soils[J]. Environmental Toxicology and Chemistry, 2006, 25(3):836-844. [20] LI, B, ZHANG X, WANG X D, et al. Refining a biotic ligand model for nickel toxicity to barley root elongation in solution culture[J]. Ecotoxicology and Environmental Safety, 2009, 72(6):1760-1766. [21] ANTUNES P M, KREAGER N J. Development of the terresrial biotic ligand ligand model for predicting nickel toxicity to barley (Hordeum vulgare):Ion effects at low pH[J]. Environmental Toxicology and Chemistry, 2009, 28(8):1704-1710. [22] ISO/11269-1. Soil quality-determination of the effects of pollutants on soil flora-Part 1:Method for the measurement of inhibition of root growth[S]. 2012. [23] LI B, ZHANG H, MA Y B, et al. Influences of soil properties and leaching on nickel toxicity to barley root elongation[J]. Ecotoxicology and Environmental Safety, 2011, 74(3):459-466. [24] DE SCHAMPHELAERE K A, JANSSEN C R. A biotic ligand model predicting acute copper toxicity for Daphnia magna:The effects of calcium, magnesium, sodium, potassium, and pH[J]. Environmental Science & Technology, 2002, 36(1):48-54. [25] PEDLER J F, KINRAIDE T B, PARKER D R. Zinc rhizotoxicity in wheat and radish is alleviated by micromolar levels of magnesium and potassium in solution culture[J]. Plant and Soil, 2004, 259(1-2):191-199. [26] LI L Z, ZHOU D M, LUO X S, et al. Effect of major cations and pH on the acute toxicity of cadmium to the earthworm Eisenia fetida:Implications for the biotic ligand model approach[J]. Archives of Environmental Contamination and Toxicology, 2008, 55(1):70-77. [27] DEGRYSE F, SHAHBAZI A, VERHEYEN L, et al. Diffusion limitations in root uptake of cadmium and zinc, but not nickel, and resulting bias in the michaelis constant[J]. Plant Physiology, 2012, 160(2):1097-1109. [28] LE T T Y, VIGVER M G, HENDRIKS A J, et al. Modeling toxicity of binary metal mixtures (Cu2+-Ag+, Cu2+-Zn2+) to lettuce, Lactuca sativa, with the biotic ligand model[J]. Environmental Toxicology and Chemistry, 2013, 32(1):137-143. [29] WANG P, DE SCHAMPHELAERE K A, KOPITTKE P M, et al. Development of an electrostatic model predicting copper toxicity to plants[J]. Journal of Experimental Botany, 2012, 63(2):659-668. [30] ROGERS J T, WOOD C M. Characterization of branchial lead-calcium interaction in the freshwater rainbow trout Oncorhynchus mykiss[J]. Journal of Experimental Biology, 2004, 207(5):813-825. [31] CHOU T S, CHAO Y Y, HUANG W D, et al. Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings[J]. Journal of Plant Physiology, 2011, 168(10):1021-1030. [32] WANG X D, MA Y B, HUA L, et al. Identificaiton of hydroxyl copper toxicity to barley (Hordeum vulgare) root elongation in solution culture[J]. Environmental Toxicology and Chemistry, 2009, 28(3):662-667. [33] STANTORE R C, MATHEW R, PAQUIN P R, et al. Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and daphnia magna[J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2002, 133(1-2):271-285. [34] CLIFFORD M, MCGEER J C. Development of a biotic ligand model for the acute toxicity of zinc to Daphnia pulex in soft waters[J]. Aquatic Toxicology, 2009, 91(1):26-32. [35] 王学东, 马义兵, 华珞, 等.铜对大麦(Hordeum vulgare)的急性毒性预测模型-生物配体模型[J]. 环境科学学报, 2008, 28(8):1704-1712. WANG X D, MA Y B, HUA L, et al. Development of biotic ligand model (BLM) predicting copper acute toxicity to barley (Hordeum vulgare)[J]. Acta Scientiae Circumstantiae, 2008, 28(8):1704-1712(in Chinese).
[36] LUO X S, LI L Z, ZHOU D M. Effect of cations on copper toxicity to wheat root:Implications for the biotic ligand model[J]. Chemosphere, 2008,73(3):401-406. -

计量
- 文章访问数: 1433
- HTML全文浏览数: 1384
- PDF下载数: 350
- 施引文献: 0