[1] 刘春早, 黄益宗, 雷鸣,等. 湘江流域土壤重金属污染及其生态环境风险评价[J]. 环境科学, 2012, 33(1):263-268. LIU C Z, HUANG Y Z, LEI M, et al. Soil contamination and assessment of heavy metals of Xiangjiang River basin[J]. Environmental Science, 2012, 33(1):263-268(in Chinese).
[2] 朱桂芬, 张春燕, 王建玲,等. 新乡市寺庄顶污灌区土壤及小麦重金属污染特征的研究[J]. 农业环境科学学报, 2009, 28(2):263-268. ZHU G F, ZHANG C Y, WAGN J L, et al. Investigation of heavy metal pollution in soil and wheat grains in sewage-irrigated area in Sizhuangding Xinxiang City[J]. Journal of Agro-Environment Science, 2009, 28(2):263-268(in Chinese).
[3] PRASAD K, PARDHA S P, SHARMILA P. Concerted action of antioxidant enzyme and curtailed growth under zinc toxicity in Brassica juncea[J]. Environmental and Experimental Botany, 1991, 42(1):1-10.
[4] EBBS S D, KOCHIAN L V. Toxicity of zinc and copper to Brassica species:Implications for phytoremediation[J]. Journal of Environmental Quality, 1991, 26(3):776-781.
[5] CHANG H B, LIN C W, HUNAG H J. Zinc-induced cell death in rice (Oryza sativa L.) roots[J]. Plant Growth Regulation, 2005, 46(3):261-266.
[6] NIYOGI S, WOOD C M. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals[J]. Environmental Science & Technology, 2004, 38(23):6177-6192.
[7] THAKALI S, ALLEN H E, DI TORO D M, et al. A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils[J]. Environmental Science & Technology, 2006a, 40(22):7085-7093.
[8] THAKALI S, ALLEN H E, DI TORO D M, et al. Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil[J]. Environmental Science & Technology, 2006b, 40(22):7094-7100.
[9] 王学东, 马义兵, 华珞, 等.环境中金属生物有效性的预测模型型研究进展[J]. 生态毒理学报, 2006, 1(3):193-202. WAGN X D, MA Y B, HUA L, et al. Advances in biotic ligand model to predict the bioavailability of metals in environments[J]. Asian Journal of Ecotoxicology, 2006, 1(3):193-202(in Chinese).
[10] VAN G C, RADEMAKER M, VAN S N. Biogeodynamics of pollutants in soils and sediments[M]. Springer Berlin Heidelberg, 1995, Berlin.
[11] VAN G C. Ecological risk assessment of contaminants in soil[M]. Springer US, 1997, New York.
[12] CHENG T, ALLEN H E. Prediction of uptake of copper from solution by lettuce (Lactuca sativa Romance)[J]. Environmental Toxicology and Chemistry, 2001, 20(11):2544-2551.
[13] WANG X D, LI B, MA Y B, et al. Development of a biotic ligand model for acute zinc toxicity to barley root elongation[J]. Ecotoxicology and Environmental Safety, 2010, 73(6):1272-1278.
[14] LOCK K, DE SCHAMPHELAERE K C, BECAUS S, et al. Development and validation of a terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley (Hordeum vulgare)[J]. Environmental Pollution, 2007a, 147(3):626-633.
[15] LOCK K, VAN E H, DE SCHAMPHELAERE K C, et al. Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare)[J]. Chemosphere, 2007b, 66(7):1346-1352.
[16] ARDESTANI M, VERWEIJ R, VAN G C. The influence of calcium and pH on the uptake and toxicity of copper in Folsomia candida exposed to simplified soil solutions[J]. Journal of Hazardous Materials, 2013, 261(15):405-413.
[17] 林蕾, 陈世宝, 程旺大, 等. 基于不同终点测定土壤中Zn的毒性阈值及其田间验证[J]. 农业环境科学学报, 2013, 32(3):548-555. LIN L, CHEN S B, CHENG W D, et al. Toxicity thresholds (ECx) of Zn in soils as determined by different endpoints and its validations in fields[J]. Journal of Agro-Environment Science, 2013, 32(3):548-555(in Chinese).
[18] 魏威, 梁东丽, 陈世宝. 土壤中外源锌对不同植物毒性的敏感性分布[J]. 生态学杂志, 2012, 31(3):538-543. WEI W, LIANG D L, CHEN S B. Plant species sensitivity distribution to the phytotoxicity of soil exogenous zinc[J]. Chinese Journal of Ecology, 2012, 31(3):538-543(in Chinese).
[19] OORTS K, GHESQULERE U, SWINNEN K, et al. Soil properties affecting the toxicity of CuCl2 and NiCl2 for soil microbial processes in freshly spiked soils[J]. Environmental Toxicology and Chemistry, 2006, 25(3):836-844.
[20] LI, B, ZHANG X, WANG X D, et al. Refining a biotic ligand model for nickel toxicity to barley root elongation in solution culture[J]. Ecotoxicology and Environmental Safety, 2009, 72(6):1760-1766.
[21] ANTUNES P M, KREAGER N J. Development of the terresrial biotic ligand ligand model for predicting nickel toxicity to barley (Hordeum vulgare):Ion effects at low pH[J]. Environmental Toxicology and Chemistry, 2009, 28(8):1704-1710.
[22] ISO/11269-1. Soil quality-determination of the effects of pollutants on soil flora-Part 1:Method for the measurement of inhibition of root growth[S]. 2012.
[23] LI B, ZHANG H, MA Y B, et al. Influences of soil properties and leaching on nickel toxicity to barley root elongation[J]. Ecotoxicology and Environmental Safety, 2011, 74(3):459-466.
[24] DE SCHAMPHELAERE K A, JANSSEN C R. A biotic ligand model predicting acute copper toxicity for Daphnia magna:The effects of calcium, magnesium, sodium, potassium, and pH[J]. Environmental Science & Technology, 2002, 36(1):48-54.
[25] PEDLER J F, KINRAIDE T B, PARKER D R. Zinc rhizotoxicity in wheat and radish is alleviated by micromolar levels of magnesium and potassium in solution culture[J]. Plant and Soil, 2004, 259(1-2):191-199.
[26] LI L Z, ZHOU D M, LUO X S, et al. Effect of major cations and pH on the acute toxicity of cadmium to the earthworm Eisenia fetida:Implications for the biotic ligand model approach[J]. Archives of Environmental Contamination and Toxicology, 2008, 55(1):70-77.
[27] DEGRYSE F, SHAHBAZI A, VERHEYEN L, et al. Diffusion limitations in root uptake of cadmium and zinc, but not nickel, and resulting bias in the michaelis constant[J]. Plant Physiology, 2012, 160(2):1097-1109.
[28] LE T T Y, VIGVER M G, HENDRIKS A J, et al. Modeling toxicity of binary metal mixtures (Cu2+-Ag+, Cu2+-Zn2+) to lettuce, Lactuca sativa, with the biotic ligand model[J]. Environmental Toxicology and Chemistry, 2013, 32(1):137-143.
[29] WANG P, DE SCHAMPHELAERE K A, KOPITTKE P M, et al. Development of an electrostatic model predicting copper toxicity to plants[J]. Journal of Experimental Botany, 2012, 63(2):659-668.
[30] ROGERS J T, WOOD C M. Characterization of branchial lead-calcium interaction in the freshwater rainbow trout Oncorhynchus mykiss[J]. Journal of Experimental Biology, 2004, 207(5):813-825.
[31] CHOU T S, CHAO Y Y, HUANG W D, et al. Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings[J]. Journal of Plant Physiology, 2011, 168(10):1021-1030.
[32] WANG X D, MA Y B, HUA L, et al. Identificaiton of hydroxyl copper toxicity to barley (Hordeum vulgare) root elongation in solution culture[J]. Environmental Toxicology and Chemistry, 2009, 28(3):662-667.
[33] STANTORE R C, MATHEW R, PAQUIN P R, et al. Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and daphnia magna[J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2002, 133(1-2):271-285.
[34] CLIFFORD M, MCGEER J C. Development of a biotic ligand model for the acute toxicity of zinc to Daphnia pulex in soft waters[J]. Aquatic Toxicology, 2009, 91(1):26-32.
[35] 王学东, 马义兵, 华珞, 等.铜对大麦(Hordeum vulgare)的急性毒性预测模型-生物配体模型[J]. 环境科学学报, 2008, 28(8):1704-1712. WANG X D, MA Y B, HUA L, et al. Development of biotic ligand model (BLM) predicting copper acute toxicity to barley (Hordeum vulgare)[J]. Acta Scientiae Circumstantiae, 2008, 28(8):1704-1712(in Chinese).
[36] LUO X S, LI L Z, ZHOU D M. Effect of cations on copper toxicity to wheat root:Implications for the biotic ligand model[J]. Chemosphere, 2008,73(3):401-406.