长江嘉陵江重庆段多环芳烃的分布特征和来源辨析

邹家素, 孙静, 张晓岭, 郭志顺, 朱明吉, 刘坤. 长江嘉陵江重庆段多环芳烃的分布特征和来源辨析[J]. 环境化学, 2017, 36(6): 1369-1376. doi: 10.7524/j.issn.0254-6108.2017.06.2016092102
引用本文: 邹家素, 孙静, 张晓岭, 郭志顺, 朱明吉, 刘坤. 长江嘉陵江重庆段多环芳烃的分布特征和来源辨析[J]. 环境化学, 2017, 36(6): 1369-1376. doi: 10.7524/j.issn.0254-6108.2017.06.2016092102
ZOU Jiasu, SUN Jing, ZHANG Xiaoling, GUO Zhishun, ZHU Mingji, LIU Kun. Distribution characteristics and sources of polycyclic aromatic hydrocarbons (PAHs) from Yangtze and Jialing River in Chongqing[J]. Environmental Chemistry, 2017, 36(6): 1369-1376. doi: 10.7524/j.issn.0254-6108.2017.06.2016092102
Citation: ZOU Jiasu, SUN Jing, ZHANG Xiaoling, GUO Zhishun, ZHU Mingji, LIU Kun. Distribution characteristics and sources of polycyclic aromatic hydrocarbons (PAHs) from Yangtze and Jialing River in Chongqing[J]. Environmental Chemistry, 2017, 36(6): 1369-1376. doi: 10.7524/j.issn.0254-6108.2017.06.2016092102

长江嘉陵江重庆段多环芳烃的分布特征和来源辨析

  • 基金项目:

    重庆市环境保护局环保科技项目(环科字2013第2号)资助.

Distribution characteristics and sources of polycyclic aromatic hydrocarbons (PAHs) from Yangtze and Jialing River in Chongqing

  • Fund Project: Supported by Foundation for Environmental Protection Science and Technology in the Environmental Protection Bureau of Chongqing (Environmental Protection and Scientific Research[2013]2).
  • 摘要: 2014年7月,采集长江嘉陵江重庆段9个断面的地表水和沉积物样品,检测15种多环芳烃(PAHs)含量.结果表明,地表水的∑PAHs浓度范围为65.6-1249 ng·L-1,沉积物中∑PAHs浓度范围为68.6-4226 ng·g-1,与其历史浓度水平相当;聚类分析表明,化工园区对其下游PAHs分布有一定影响,园区下游地表水和沉积物∑PAHs浓度最高.两江汇流前,地表水4环PAHs占总量的43.63%-61.68%;两江汇流后,2环比例增加,占总量的29.01%-68.72%;沉积物4环PAHs占总量的26.62%-48.74%.在顺流方向,地表水中河左∑PAHs浓度高于河中和河右,沉积物中∑PAHs浓度横向无明显差别,其中化工园区下游可能是受左岸工业影响,地表水中河左∑PAHs浓度是河中、河右的12倍和7倍,沉积物中河左∑PAHs浓度是河右的7倍.环数组成、分子比值和主成分分析表明研究区域地表水PAHs来源主要为木材、煤燃烧源,同时还包括石油燃烧和石油泄漏,沉积物则主要为木材、煤高温燃烧源.
  • 加载中
  • [1] MASTRAL A M, CALLÉN M S. A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation[J]. Environmental Science and Technology, 2000, 34(15):3051-3057.
    [2] KHALILI N R, SCHEFF P A, HOLSEN T M. PAH source finger-prints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions[J]. Atmospheric Environment, 1995, 29(4):533-542.
    [3] LUO X J, SHE J C, MAI B X, et al. Distribution source apportionment, and transport of PAHs in sediments from the Pearl River Delta and the Northern South China Sea[J]. Archives of Environmental Contamination and Toxicology, 2008, 55:11-20.
    [4] EPA. Quality criteria for water. EPA 440/5-86-001[S]. US Environmental Protection Agency, Washington DC, 1987.
    [5] 郭志顺,罗财红,张卫东,等.三峡库区重庆段江水中持久性有机污染物污染状况分析[J]. 中国环境监测, 2006, 22(4):45-48.

    GUO Z S, LUO C H, ZHANG W D, et al. The analysis of the persistent organic pollution in the three gorges region in Chongqing[J]. Environmental Monitoring in China, 2006, 22(4):45-48(in Chinese).

    [6] 蔡文良, 罗固源, 许晓毅, 等. 嘉陵江重庆段表层水体多环芳烃的污染特征[J]. 环境科学, 2012, 33(7):2341-2346.

    CAI W L, LUO G Y, Xu X Y, et al. Contamination characteristics of polycyclic aromatic hydrocarbons (PAHs) in surface water from Jialing River in Chongqing[J]. Environment Science, 2012, 33(7):2341-2346(in Chinese).

    [7] MAI B X, QI S H, ZENG E Y, et al. Distribution of polycyclic aromatic hydrocarbons in the coastal region of Macao, China:Assessment of input sources and transport pathways using compositional analysis[J]. Environ Sci Technol, 2003, 37:4855-4863.
    [8] HUSSAIN K, BALACHANDRAN S, HOQUER R. Sources of polycyclic aromatic hydrocarbons in sediments of the Bharalu River, a tributary of the River Brahmaputra in Guwahati, India[J]. Ecotoxicology and Environmental Safety, 2015, 122:61-67.
    [9] YUNKER M B, MACDONALD R W, VINGARZAN R, et al.PAHs in the Fraser River basin:A critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33(4):489-515.
    [10] DENG H, PENG P, HUANG W, et al. Distribution and loadings of polycyclic aromatic hydrocarbons in the Xijiang River in Guangdong, South China[J]. Chemosphere, 2006, 64(8):1401-1411.
    [11] MEN B, HE M C, TAN L, et al. Distributions of polycyclic aromatic hydrocarbons in the Daliao River Estuary of Liaodong Bay, Bohai Sea (China)[J]. Marine Pollution Bulletin, 2009, 58(6):818-826.
    [12] LUO X J, CHEN S J, MAI B X, et al. Polycyclic aromatic hydrocarbons in suspended particulate matter and sediments from the Pearl River Estuary and adjacent coastal areas, China[J]. Environmental Pollution, 2006, 139(1):9-20.
    [13] Zheng W, Lichwa J, Yan T. Impact of different land uses on polycyclic aromatic hydrocarbon contamination in coastal stream sediments[J]. Chemosphere, 2011, 84(4):376-382.
    [14] 陈卫锋, 倪进治, 杨红玉, 等. 闽江福州段沉积物中多环芳烃的分布、来源及其生态风险[J]. 环境科学学报, 2012, 32(4):878-884.

    CHEN W F, NI J Z, YANG H Y, et al. Distribution, sources and ecological risks of PAHs in sediment of Minjiang River in Fuzhou City[J]. Acta Scientiae Circumstantiae, 32(4):878-884(in Chinese).

    [15] KAVOURAS I G, KOUTRAKIS P, TSAPAKIS M, et al. Source apportionment of urban particulate aliphatic and polycyclic aromatic hydrocarbons (PAHs) using multivariate methods[J]. Environmental Science and Technology, 2001, 35(11):2288-2294.
    [16] 王超, 谭丽, 吕怡兵, 等. 长江重庆段表层水体中多环芳烃的分布及来源分析[J]. 环境化学, 2015, 34(1):18-22.

    WANG C, TAN L, LYU Y B, et al. Distribution and origin of polycyclic aromatic hydrocarbons (PAHs) in surface water from Chongqing section of the Yangtze River[J]. Environmental Chemistry, 2015, 34(1):18-22(in Chinese).

    [17] 杜娴. 重庆主城两江水体与沉积物中邻苯二甲酸酯和多环芳烃污染水平及特征[D]. 重庆:重庆大学, 2012. DU X. Levels and characteristics of phthalate esters and polycyclic aromatic hydrocarbons in the Yangtze river and Jialing river from Chongqing's urban areas[D]. Chongqing:Chongqing University, 2012(in Chinese).
    [18] 何燕.重庆市主城区水中多环芳烃的污染状况分析及环境行为初步研究[D]. 重庆:西南大学, 2008. HE Y.Primary study on polycyclic aromatic hydrocarbons in surface water of Chongqing district[D]. Chongqing:Southwest University, 2008(in Chinese).
  • 加载中
计量
  • 文章访问数:  975
  • HTML全文浏览数:  909
  • PDF下载数:  406
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-09-21
  • 刊出日期:  2017-06-15
邹家素, 孙静, 张晓岭, 郭志顺, 朱明吉, 刘坤. 长江嘉陵江重庆段多环芳烃的分布特征和来源辨析[J]. 环境化学, 2017, 36(6): 1369-1376. doi: 10.7524/j.issn.0254-6108.2017.06.2016092102
引用本文: 邹家素, 孙静, 张晓岭, 郭志顺, 朱明吉, 刘坤. 长江嘉陵江重庆段多环芳烃的分布特征和来源辨析[J]. 环境化学, 2017, 36(6): 1369-1376. doi: 10.7524/j.issn.0254-6108.2017.06.2016092102
ZOU Jiasu, SUN Jing, ZHANG Xiaoling, GUO Zhishun, ZHU Mingji, LIU Kun. Distribution characteristics and sources of polycyclic aromatic hydrocarbons (PAHs) from Yangtze and Jialing River in Chongqing[J]. Environmental Chemistry, 2017, 36(6): 1369-1376. doi: 10.7524/j.issn.0254-6108.2017.06.2016092102
Citation: ZOU Jiasu, SUN Jing, ZHANG Xiaoling, GUO Zhishun, ZHU Mingji, LIU Kun. Distribution characteristics and sources of polycyclic aromatic hydrocarbons (PAHs) from Yangtze and Jialing River in Chongqing[J]. Environmental Chemistry, 2017, 36(6): 1369-1376. doi: 10.7524/j.issn.0254-6108.2017.06.2016092102

长江嘉陵江重庆段多环芳烃的分布特征和来源辨析

  • 1.  重庆市环境监测中心, 有机污染物环境化学行为与生态毒理重庆市重点实验室, 重庆, 401147;
  • 2.  重庆市环境科学研究院, 重庆, 401147
基金项目:

重庆市环境保护局环保科技项目(环科字2013第2号)资助.

摘要: 2014年7月,采集长江嘉陵江重庆段9个断面的地表水和沉积物样品,检测15种多环芳烃(PAHs)含量.结果表明,地表水的∑PAHs浓度范围为65.6-1249 ng·L-1,沉积物中∑PAHs浓度范围为68.6-4226 ng·g-1,与其历史浓度水平相当;聚类分析表明,化工园区对其下游PAHs分布有一定影响,园区下游地表水和沉积物∑PAHs浓度最高.两江汇流前,地表水4环PAHs占总量的43.63%-61.68%;两江汇流后,2环比例增加,占总量的29.01%-68.72%;沉积物4环PAHs占总量的26.62%-48.74%.在顺流方向,地表水中河左∑PAHs浓度高于河中和河右,沉积物中∑PAHs浓度横向无明显差别,其中化工园区下游可能是受左岸工业影响,地表水中河左∑PAHs浓度是河中、河右的12倍和7倍,沉积物中河左∑PAHs浓度是河右的7倍.环数组成、分子比值和主成分分析表明研究区域地表水PAHs来源主要为木材、煤燃烧源,同时还包括石油燃烧和石油泄漏,沉积物则主要为木材、煤高温燃烧源.

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回