重金属胁迫下不同区域土壤的生态功能稳定性与其微生物群落结构的相关性
Correlation between microbial community structure and soil ecosystem functional stability under heavy metal stress
-
摘要: 本文选取了理化性质差异较大的3个区域的土壤作为研究对象,采用底物诱导呼吸实验进行土壤微生物活性测定,并通过磷脂脂肪酸(PLFA)方法进行微生物群落结构检测分析.结果表明,AM真菌可作为土壤微生物活性的指示性菌种;主成分分析表明,重金属对不同区域土壤的微生物群落结构、分布和疏密度的影响有一定差异性,即对于受污染胁迫后稳定性较好的土壤,其微生物群落结构基本会保持整体上的相似和不变性,而对稳定性较差的土壤,受重金属污染前后其微生物多样性、均匀度和丰度均会表现出明显的差异性;聚类分析则显示,土壤微生物群落的聚类会随时间增加趋于统一,但重金属胁迫会阻碍这一趋势.本研究探讨了重金属污染与土壤微生物的内在关系,有助于提早构建土壤重金属污染微生物预警体系.Abstract: In this study, soil samples were selected from 3 regions in China with obvious variation of physico-chemical properties. The soil incubation with a measurement of respiration was performed to observe the soil microbial activities, and the method of phospholipid fatty acids (PLFA) was applied for analyzing the microbial community structure. The results show that AM fungi could be used as indicative bacteria of soil microbial activity; and the principal component analysis shows that heavy metal stress would have certain influence on microbial PLFA's species, distribution and density. For the soil with high stability, its microbial community structure remained the overall similarities and invariance; while for the soil with poor stability, the microbial diversity and evenness showed obvious differences. Clustering analysis shows that the diversity of soil microbial communities over time tends to be uniform, and heavy metals stress will hinder this trend. This study discussed the relationship between heavy metal pollution and soil microorganism, which can be contributed to the early warning system of heavy metal pollution for soil ecosystem.
-
Key words:
- soil /
- heavy metal /
- respiration /
- microbial community /
- eco-functional stability
-
-
[1] 徐磊, 周静, 崔红标, 等. 重金属污染土壤的修复与修复效果评价研究进展[J]. 中国农学通报, 2014, 30(20):161-167. XU L, ZHOU J, CUI H B, et al. Research progress in remediation and its effect evaluation of heavy metal contaminated soil[J]. Chinese Agricultural Science Bulletin, 2014, 30(20):161-167(in Chinese).
[2] DENG H. A review of diversity-stability relationship of soil microbial community:What do we not know?[J]. Journal of Environmental Sciences, 2012, 24(6):1027-1035. [3] YU Z Q. Microbial remediation of heavy metal (loid) contaminated soil:A review[J]. Agricultural Science & Technology, 2016, 17(1):85-91. [4] XIE X, LIAO M, MA A, et al. Effects of contamination of single and combined cadmium and mercury on the soil microbial community structural diversity and functional diversity[J]. Chinese Journal of Geochemistry, 2011, 30(3):366-374. [5] 李小林, 颜森, 张小平, 等. 铅锌矿区重金属污染对微生物数量及放线菌群落结构的影响[J]. 农业环境科学学报, 2011, 30(3):468-475. LI X L, YAN S, ZHANG X P, et al. Response of microbe quantity and actinomycetes community of heavy metal contaminated soils in leadzinc mine[J]. Journal of Agro-Environment Science, 2011, 30(3):468-475(in Chinese).
[6] 李晶, 刘玉荣, 贺纪正, 等. 土壤微生物对环境胁迫的响应机制[J]. 环境科学学报, 2013, 33(4):959-967. LI J, LIU Y R, HE J Z, et al. Insights into the responses of soil microbial community to the environmental disturbances[J]. Acta Scientiae Circumstantiae, 2013, 33(4):959-967(in Chinese).
[7] 贺纪正, 李晶, 郑袁明. 土壤生态系统微生物多样性-稳定性关系的思考[J]. 生物多样性, 2013, 21(4):411-420. HE J Z, LI J, ZHENG Y M. Thoughts on the microbial diversity-stability relationship in soil ecosystems[J]. Biodiversity Science, 2013, 21(4):411-420(in Chinese).
[8] [9] ZHANG B, DENG H, WANG H L et al. Does microbial habitat or community structure drive the functional stability of microbes to stresses following re-vegetation of a severely degraded soil?[J]. Soil Biology & Biochemistry, 2010, 42(5):850-859. [10] TRÖGL J, JIRKOVÁ I, ZEMÁNKOVÁ P, et al. Estimation of the quantity of bacteria encapsulated in Lentikats Biocatalyst via phospholipid fatty acids content:A preliminary study[J]. Folia Microbiologica, 2013, 58(2):135-140. [11] 林营志, 刘波, 张秋芳, 等. 土壤微生物群落磷脂脂肪酸生物标记分析程序PLFAEco[J]. 中国农学通报, 2009, 25(14):286-290. LIN Y Z, LIU B, ZHANG Q F, et al. The development of the program plfaeco for analysis of the phospholipid fatty acids (PLFAs) biomarkers detected from the microbial community in soil samples[J]. Chinese Agricultural Science Bulletin, 2009, 25(14):286-290(in Chinese).
[12] 张秋芳, 刘波, 林营志, 等. 土壤微生物群落磷脂脂肪酸PLFA生物标记多样性[J]. 生态学报, 2009, 29(8):4127-4137. ZHANG Q F, LIU B, LIN Y Z, et al. The diversity of phospholipid fatty acid (PLFA) biomarker for the microbial community in soil[J]. Acta Ecologica Sinica, 2009, 29(8):4127-4137(in Chinese).
[13] FLIEPBACH A, MARTENS R, REBER H. Soil microbial biomass and activity in soils treated with heavy metal contaminated sewage sludge[J]. Soil Biol Bio Chem, 1994, 26(9):1201-1205. [14] WITTEBOLLE L, MARZORATI M, CLEMENT L, et al. Initial community evenness favours functionality under selective stress[J]. Nature, 2009, 458(7238):623-626. [15] BOSSIO D A, SCOW K M, GUNAPALA N, et al. Determinants of soil microbial communities:Effects of agricultural management, season, and soil type on phospholipids fatty acid profiles[J]. Microbial Ecology, 1998, 36(1):1-12. [16] GRIFFITHS B S, PHILIPPOT L. Insights into the resistance and resilience of the soil microbial community[J]. FEMS Microbiology Review, 2013, 37(2):112-129. [17] HILDEBRANDT U, REGVAR M, BOTHE H. Arbuscularmycorrhiza and heavy metal tolerance[J]. Phytochemistry, 2007, 68(1):139-146. [18] GHRE V, PASZKOWSKI U. Contribution of the arbuscularmycorrhizal symbiosis to heavy metal phytoremediation[J]. Planta, 2006, 223(6):1115-1122. [19] FEDDERMANN N, FINLAY R, BOLLER T, et al. Functional diversity in arbuscularmycorrhiza the role of gene expression, phosphorous nutrition and symbiotic efficiency[J]. Fungal Ecology, 2010, 3(1):1-8. [20] MIRANSARI M. Hyperaccumulators, arbuscularmycorrhizal fungi and stress of heavy metals[J]. Biotechnology Advances, 2011, 29(6):645-653. [21] 白震, 何红波, 张威, 等. 磷脂脂肪酸技术及其在土壤微生物研究中的应用[J]. 生态学报, 2006, 26(7):2387-2394. BAI Z, HE H B, ZHANG W, et al. PLFAs technique and it's application in the study of soil microbiology[J]. Acta Ecologica Sinica, 2006, 26(7):2387-2394(in Chinese).
[22] MARTA A P, AMOROSO M J, ABATE C M. Chromium (Ⅵ) resistance and removal by actinomycete strains isolated from sediments[J]. Chemosphere, 2007, 67(4):660-667. [23] HINOJOSA M B, CARREIRA J A, GARCIA-RUIZ R, et al. Microbial response to heavy metal-polluted soils:Community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts[J]. J Environ Qual, 2005, 34(5):1789-1800. [24] 吴愉萍. 基于磷脂脂肪酸(PLFA)分析技术的土壤微生物群落结构多样性的研究[D]. 杭州:浙江大学, 2009. Wu Y P. Studies on soil microbial community structure based on phospholipid fatty acid (PLFA) acid analysis[D]. Hangzhou:Zhejiang University, 2009(in Chinese). [25] VAN ELSAS J D, CHIURAZZI M, MALLON C A, et al. Microbial diversity determines the invasion of soil by a bacterial pathogen[J]. Proceedings of the National Academy of Sciences, USA, 2012, 109(4):1159-1164. [26] WORM B, BARBIER E B, BEAUMONT N, et al. Impacts of biodiversity loss on ocean ecosystem services[J]. Science, 2006, 314(5800):787-790. [27] 滕应, 黄昌勇, 龙健, 等. 铅锌银尾矿污染区土壤微生物区系及主要生理类群研究[J]. 农业环境科学学报, 2003, 22(4):408-411. TENG Y, HUANG C Y, LONG J, et al. Microbial pollutions and major physiological groups in soils contaminated by tailing from Pb, Zn and Ag mine[J]. Journal of Agro-environment Science, 2003, 22(4):408-411(in Chinese).
-

计量
- 文章访问数: 2044
- HTML全文浏览数: 1955
- PDF下载数: 609
- 施引文献: 0