生物表面活性剂胆酸钠对氯酚的增溶
Solubilization of chlorophenols by biosurfactant sodium cholate
-
摘要: 胆酸钠是一种重要的生物表面活性剂,目前的研究主要集中在利胆药物研制方面,而有关其在增溶修复有机污染方面的应用研究较少.本文考察了胆酸钠(NaC)、脱氧胆酸钠(NaDC)、十二烷基硫酸钠(SDS)、曲拉通(TX-100)和十六烷基三甲基溴化铵(CTAB)对2,4,6-三氯苯酚(2,4,6-TCP)和2,4-二氯苯酚(2,4-DCP)的增溶作用,并探究了底物结构、温度和无机离子对NaC增溶氯酚的性能的影响.实验结果表明,当表面活性剂浓度大于临界胶束浓度(CMC)时,2,4,6-TCP和2,4-DCP的表观溶解度与表面活性剂浓度具有良好的线性关系.其中,相比于其它表面活性剂,当浓度高于0.05 mol·L-1时,NaC具有更良好的增溶性能.随苯环上氯原子个数从0增加到3,NaC的摩尔增溶比(MSR)值随氯酚疏水性(Kow)的增大而线性减小,NaC的胶束-水分配系数(Kmc)值则线性增大.在288-308 K的温度范围内,NaC增溶氯酚的性能逐渐增强.4种无机盐KCl、NaCl、Na2SO4、CaCl2对NaC增溶2,4,6-TCP和2,4-DCP的影响不同.随着无机盐浓度的升高,NaC增溶2,4,6-TCP的能力先上升后下降,而增溶2,4-DCP的能力则迅速下降.Abstract: Sodium cholate, as an attractive biosurfactant, has been intensively studied regarding its application in choleretic drugs. However, its application in the solubilization-enhanced remediation of organic pollution receives relatively little attention. In this work, the solubilization of 2,4,6-TCP and 2,4-DCP by sodium cholate (NaC), sodium deoxycholate (NaDC), sodium dodecyl sulfate (SDS), Triton X-100 (TX-100) and cetyltrimethyl ammonium bromide (CTAB) were investigated, and the effects of the structure of substrates, temperature and ionic strength on the solubilization capacity of NaC were discussed as well. The results indicated that good linear relationships were found between the apparent solubility of 2,4,6-TCP, 2,4-DCP and the concentration of surfactants when the critical micelle concentration (CMC) was exceeded. Compared with other surfactants, NaC showed better capacity in solubilization when surfactants were added over 0.05 mol·L-1. With the chlorine atom number on the benzene ring increasing from 0 to 3, the molar solubilization ratio (MSR) decreased linearly as the hydrophobicity of chlorophenols(Kow)increased, while the micelle-water partition coefficients (Kmc) of NaC increased linearly. As the temperature went up from 288 K to 308 K, the solubilization capacity of NaC was gradually enhanced. Inorganic salts (KCl, NaCl, Na2SO4, CaCl2) showed different effects on the solubilization of 2,4,6-TCP and 2,4-DCP by NaC. The solubilization of 2,4,6-TCP by NaC was first increased and then decreased, and the solubilizaiton of 2,4-DCP by NaC decreased significantly with the increase of inorganic salts.
-
Key words:
- biosurfactant /
- sodium cholate /
- chlorophenol /
- solubilization
-
-
[1] SUN M, CUI P L, JI S J, et al. Octadecyl-modified graphene as an adsorbent for hollow fiber liquid phase microextraction of chlorophenols from honey[J]. Bull Korean Chem Soc, 2014, 35(4):1011-1015. [2] WANG C, MA R Y, WU Q H, et al. Magnetic porous carbon as an adsorbent for the enrichment of chlorophenols from water and peach juice samples[J]. Journal of Chromatography A, 2014, 1361:60-66. [3] 杨秋红, 程小艳, 杨坪, 等. 固相萃取-高效液相色谱串联质谱法同时检测地表水中的2,4-二氯酚、2,4,6-三氯酚和五氯酚[J]. 分析化学, 2011, 39(8):1208-1212. YANG Q H, CHENG X Y, YANG P, et al. Simultaneous determination of 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol in surface water by high performance liquid chromatography-tandem mass spectrometry with solid phase extraction[J]. Chinese Journal of Analytical Chemistry, 2011, 39(8):1208-1212(in Chinese).
[4] 周雅文, 刘静伟, 赵莉, 等. 表面活性剂的性能与应用(Ⅸ)——表面活性剂的增溶作用及其应用[J]. 日用化学工业, 2014,44(9):486-489. ZHOU Y W, LIU J W, ZHAO L, et al. Performance and applications of surfactants (Ⅸ)-solubilization function of surfactants and applications[J]. China Surfactant Detergent & Cosmetics, 2014,44(9):486-489(in Chinese).
[5] MASRAT R, MASWAL M, DARAA. Competitive solubilization of naphthalene and pyrene in various micellar systems[J]. Journal of Hazardous Materials, 2013, 244:662-670. [6] SHI Z T, CHEN J J, LIU J F, et al. Anionic-nonionic mixed-surfactant-enhanced remediation of PAH-contaminated soil[J]. Environmental Science and Pollution Research, 2015, 22(16):12769-12774. [7] SALES P S, DE ROSSI R H, FERNANDEZ M A. Different behaviours in the solubilization of polycyclic aromatic hydrocarbons in water induced by mixed surfactant solutions[J]. Chemosphere, 2011, 84(11):1700-1707. [8] ZHOU W J, YANG JJ, LOU L J, et al. Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant[J]. Environmental Pollution, 2011, 159(5):1198-1204. [9] ZENG Q H, PENG S, LIU M, et al. Solubilization and adsorption behaviors of 2,4,6-trichlorophenol in the presence of surfactants[J]. Chemical Engineering Journal, 2013,230:202-209. [10] 闫端, 余晖, 黄国和, 等. 双子表面活性剂CG12-3-12、鼠李糖脂与TX-100对多环芳烃增溶作用的比较研究[J]. 环境科学学报, 2015,35(1):229-237. YAN D, YU H, HUANG G H, et al. Effects of gemini surfactant CG12-3-12, rhamnolipid and triton X-100 on solubility enhancement of PAHs:A comparative study[J]. Acta Scientiae Circumstantiae, 2015, 35(1):229-237(in Chinese).
[11] CHONG Z Y, LIAO X Y, YAN X L, et al. Enhanced desorption of PAHs from manufactured gas plant soils using different types of surfactants[J]. Pedosphere, 2014, 24(2):209-219. [12] 郭利果, 苏荣国, 梁生康, 等. 鼠李糖脂生物表面活性剂对多环芳烃的增溶作用[J]. 环境化学, 2009, 28(4):510-514. GUO L G, SU R G, LIANG S K, et al. Solubilization of polycyclic aromatic hydrocarbons by rhamnolipid biosurfactant[J]. Environmental Chemistry, 2009, 28(4):510-514(in Chinese).
[13] MAO X H, JIANG R, XIAO W, et al. Use of surfactants for the remediation of contaminated soils:A review[J]. Journal of Hazardous Materials, 2015, 285:419-435. [14] 吴同浩, 王仲妮. 生物表面活性剂胆汁盐胶束化及相行为[J]. 化学进展, 2011, 23(1):80-89. WU T H, WANG Z N. Micellization and phase behavior of biosurfactant bile salts[J]. Progress in Chemistry, 2011, 23(1):80-89(in Chinese).
[15] MASWAL M, DARAA. Mixed micelles of sodium cholate and Brij30:Their rheologicalbehaviour and capability towards solubilization and stabilizationof rifampicin[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2013, 436(35):704-713. [16] POOLE S K, POOLE C F. Chromatographic models for the sorption of neutral organic compounds by soil from water and air[J]. Journal of Chromatography A, 1999, 845(1):381-400. [17] CZAPLICKA M. Sources and transformations of chlorophenols in the natural environment[J]. Science of the Total Environment, 2004, 322(1):21-39. [18] MATSUOKA K, MOROI Y. Micelle formation of sodium deoxycholate and sodium ursodeoxycholate (Part 1)[J]. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 2002, 1580(2):189-199. [19] MATSUOKA K, MAEDA M, MOROI Y. Micelle formation of sodium glyco- and taurocholates and sodium glyco- and taurodeoxycholates and solubilization of cholesterol into their micelles[J]. Colloids and Surfaces B-Biointerfaces, 2003, 32(2):87-95. [20] KILE D E, CHIOU C T. Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration[J]. Environmental Science & Technology, 1989, 23(7):832-838. [21] EDWARDS D A, LUTHY R G, LIU Z. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions[J]. Environmental Science & Technology, 1991, 25(1):127-133. [22] SUBUDDHI U, MISHRA A K. Micellization of bile salts in aqueous medium:A fluorescence study[J]. Colloids and Surfaces B-Biointerfaces, 2007, 57(1):102-107. [23] FUENTEALBA D, THURBER K, BOVERO E, et al. Effect of sodium chloride on the binding of polyaromatic hydrocarbon guests with sodium cholate aggregates[J]. Photochemical & Photobiological Sciences, 2011, 10(9):1420-1430. [24] 贾少华, 宋存义, 栾海波, 等. 烷基糖苷对石油增溶作用及其影响因素研究[J]. 土壤, 2014, 46(4):697-702. JIA S H, SONG C Y, LUAN H B, et al. Enhanced solubilization of crude oil by using alkyl polyglucoside[J]. Soils, 2014, 46(4):697-702(in Chinese).
-

计量
- 文章访问数: 1711
- HTML全文浏览数: 1637
- PDF下载数: 470
- 施引文献: 0