生物表面活性剂胆酸钠对氯酚的增溶

梁爽, 洪松, 汤峥, 吴笛, 李星, 王林裴, 彭莎, 李宛怡. 生物表面活性剂胆酸钠对氯酚的增溶[J]. 环境化学, 2017, 36(2): 345-355. doi: 10.7524/j.issn.0254-6108.2017.02.2016061203
引用本文: 梁爽, 洪松, 汤峥, 吴笛, 李星, 王林裴, 彭莎, 李宛怡. 生物表面活性剂胆酸钠对氯酚的增溶[J]. 环境化学, 2017, 36(2): 345-355. doi: 10.7524/j.issn.0254-6108.2017.02.2016061203
LIANG Shuang, HONG Song, TANG Zheng, WU Di, LI Xing, WANG Linpei, PENG Sha, LI Wanyi. Solubilization of chlorophenols by biosurfactant sodium cholate[J]. Environmental Chemistry, 2017, 36(2): 345-355. doi: 10.7524/j.issn.0254-6108.2017.02.2016061203
Citation: LIANG Shuang, HONG Song, TANG Zheng, WU Di, LI Xing, WANG Linpei, PENG Sha, LI Wanyi. Solubilization of chlorophenols by biosurfactant sodium cholate[J]. Environmental Chemistry, 2017, 36(2): 345-355. doi: 10.7524/j.issn.0254-6108.2017.02.2016061203

生物表面活性剂胆酸钠对氯酚的增溶

  • 基金项目:

    教育部新世纪优秀人才支持计划(NCET-12-0429)和武汉市应用基础研究计划项目(201406010101010063)资助.

Solubilization of chlorophenols by biosurfactant sodium cholate

  • Fund Project: Supported by Program for New Century Excellent Talents in University(NCET-12-0429) and Applied Basic Research Programs of Science and Technology Commission Foundation of Wuhan (201406010101010063).
  • 摘要: 胆酸钠是一种重要的生物表面活性剂,目前的研究主要集中在利胆药物研制方面,而有关其在增溶修复有机污染方面的应用研究较少.本文考察了胆酸钠(NaC)、脱氧胆酸钠(NaDC)、十二烷基硫酸钠(SDS)、曲拉通(TX-100)和十六烷基三甲基溴化铵(CTAB)对2,4,6-三氯苯酚(2,4,6-TCP)和2,4-二氯苯酚(2,4-DCP)的增溶作用,并探究了底物结构、温度和无机离子对NaC增溶氯酚的性能的影响.实验结果表明,当表面活性剂浓度大于临界胶束浓度(CMC)时,2,4,6-TCP和2,4-DCP的表观溶解度与表面活性剂浓度具有良好的线性关系.其中,相比于其它表面活性剂,当浓度高于0.05 mol·L-1时,NaC具有更良好的增溶性能.随苯环上氯原子个数从0增加到3,NaC的摩尔增溶比(MSR)值随氯酚疏水性(Kow)的增大而线性减小,NaC的胶束-水分配系数(Kmc)值则线性增大.在288-308 K的温度范围内,NaC增溶氯酚的性能逐渐增强.4种无机盐KCl、NaCl、Na2SO4、CaCl2对NaC增溶2,4,6-TCP和2,4-DCP的影响不同.随着无机盐浓度的升高,NaC增溶2,4,6-TCP的能力先上升后下降,而增溶2,4-DCP的能力则迅速下降.
  • 加载中
  • [1] SUN M, CUI P L, JI S J, et al. Octadecyl-modified graphene as an adsorbent for hollow fiber liquid phase microextraction of chlorophenols from honey[J]. Bull Korean Chem Soc, 2014, 35(4):1011-1015.
    [2] WANG C, MA R Y, WU Q H, et al. Magnetic porous carbon as an adsorbent for the enrichment of chlorophenols from water and peach juice samples[J]. Journal of Chromatography A, 2014, 1361:60-66.
    [3] 杨秋红, 程小艳, 杨坪, 等. 固相萃取-高效液相色谱串联质谱法同时检测地表水中的2,4-二氯酚、2,4,6-三氯酚和五氯酚[J]. 分析化学, 2011, 39(8):1208-1212.

    YANG Q H, CHENG X Y, YANG P, et al. Simultaneous determination of 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol in surface water by high performance liquid chromatography-tandem mass spectrometry with solid phase extraction[J]. Chinese Journal of Analytical Chemistry, 2011, 39(8):1208-1212(in Chinese).

    [4] 周雅文, 刘静伟, 赵莉, 等. 表面活性剂的性能与应用(Ⅸ)——表面活性剂的增溶作用及其应用[J]. 日用化学工业, 2014,44(9):486-489.

    ZHOU Y W, LIU J W, ZHAO L, et al. Performance and applications of surfactants (Ⅸ)-solubilization function of surfactants and applications[J]. China Surfactant Detergent & Cosmetics, 2014,44(9):486-489(in Chinese).

    [5] MASRAT R, MASWAL M, DARAA. Competitive solubilization of naphthalene and pyrene in various micellar systems[J]. Journal of Hazardous Materials, 2013, 244:662-670.
    [6] SHI Z T, CHEN J J, LIU J F, et al. Anionic-nonionic mixed-surfactant-enhanced remediation of PAH-contaminated soil[J]. Environmental Science and Pollution Research, 2015, 22(16):12769-12774.
    [7] SALES P S, DE ROSSI R H, FERNANDEZ M A. Different behaviours in the solubilization of polycyclic aromatic hydrocarbons in water induced by mixed surfactant solutions[J]. Chemosphere, 2011, 84(11):1700-1707.
    [8] ZHOU W J, YANG JJ, LOU L J, et al. Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant[J]. Environmental Pollution, 2011, 159(5):1198-1204.
    [9] ZENG Q H, PENG S, LIU M, et al. Solubilization and adsorption behaviors of 2,4,6-trichlorophenol in the presence of surfactants[J]. Chemical Engineering Journal, 2013,230:202-209.
    [10] 闫端, 余晖, 黄国和, 等. 双子表面活性剂CG12-3-12、鼠李糖脂与TX-100对多环芳烃增溶作用的比较研究[J]. 环境科学学报, 2015,35(1):229-237.

    YAN D, YU H, HUANG G H, et al. Effects of gemini surfactant CG12-3-12, rhamnolipid and triton X-100 on solubility enhancement of PAHs:A comparative study[J]. Acta Scientiae Circumstantiae, 2015, 35(1):229-237(in Chinese).

    [11] CHONG Z Y, LIAO X Y, YAN X L, et al. Enhanced desorption of PAHs from manufactured gas plant soils using different types of surfactants[J]. Pedosphere, 2014, 24(2):209-219.
    [12] 郭利果, 苏荣国, 梁生康, 等. 鼠李糖脂生物表面活性剂对多环芳烃的增溶作用[J]. 环境化学, 2009, 28(4):510-514.

    GUO L G, SU R G, LIANG S K, et al. Solubilization of polycyclic aromatic hydrocarbons by rhamnolipid biosurfactant[J]. Environmental Chemistry, 2009, 28(4):510-514(in Chinese).

    [13] MAO X H, JIANG R, XIAO W, et al. Use of surfactants for the remediation of contaminated soils:A review[J]. Journal of Hazardous Materials, 2015, 285:419-435.
    [14] 吴同浩, 王仲妮. 生物表面活性剂胆汁盐胶束化及相行为[J]. 化学进展, 2011, 23(1):80-89.

    WU T H, WANG Z N. Micellization and phase behavior of biosurfactant bile salts[J]. Progress in Chemistry, 2011, 23(1):80-89(in Chinese).

    [15] MASWAL M, DARAA. Mixed micelles of sodium cholate and Brij30:Their rheologicalbehaviour and capability towards solubilization and stabilizationof rifampicin[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2013, 436(35):704-713.
    [16] POOLE S K, POOLE C F. Chromatographic models for the sorption of neutral organic compounds by soil from water and air[J]. Journal of Chromatography A, 1999, 845(1):381-400.
    [17] CZAPLICKA M. Sources and transformations of chlorophenols in the natural environment[J]. Science of the Total Environment, 2004, 322(1):21-39.
    [18] MATSUOKA K, MOROI Y. Micelle formation of sodium deoxycholate and sodium ursodeoxycholate (Part 1)[J]. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 2002, 1580(2):189-199.
    [19] MATSUOKA K, MAEDA M, MOROI Y. Micelle formation of sodium glyco- and taurocholates and sodium glyco- and taurodeoxycholates and solubilization of cholesterol into their micelles[J]. Colloids and Surfaces B-Biointerfaces, 2003, 32(2):87-95.
    [20] KILE D E, CHIOU C T. Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration[J]. Environmental Science & Technology, 1989, 23(7):832-838.
    [21] EDWARDS D A, LUTHY R G, LIU Z. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions[J]. Environmental Science & Technology, 1991, 25(1):127-133.
    [22] SUBUDDHI U, MISHRA A K. Micellization of bile salts in aqueous medium:A fluorescence study[J]. Colloids and Surfaces B-Biointerfaces, 2007, 57(1):102-107.
    [23] FUENTEALBA D, THURBER K, BOVERO E, et al. Effect of sodium chloride on the binding of polyaromatic hydrocarbon guests with sodium cholate aggregates[J]. Photochemical & Photobiological Sciences, 2011, 10(9):1420-1430.
    [24] 贾少华, 宋存义, 栾海波, 等. 烷基糖苷对石油增溶作用及其影响因素研究[J]. 土壤, 2014, 46(4):697-702.

    JIA S H, SONG C Y, LUAN H B, et al. Enhanced solubilization of crude oil by using alkyl polyglucoside[J]. Soils, 2014, 46(4):697-702(in Chinese).

  • 加载中
计量
  • 文章访问数:  1711
  • HTML全文浏览数:  1637
  • PDF下载数:  470
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-06-12
  • 刊出日期:  2017-02-15
梁爽, 洪松, 汤峥, 吴笛, 李星, 王林裴, 彭莎, 李宛怡. 生物表面活性剂胆酸钠对氯酚的增溶[J]. 环境化学, 2017, 36(2): 345-355. doi: 10.7524/j.issn.0254-6108.2017.02.2016061203
引用本文: 梁爽, 洪松, 汤峥, 吴笛, 李星, 王林裴, 彭莎, 李宛怡. 生物表面活性剂胆酸钠对氯酚的增溶[J]. 环境化学, 2017, 36(2): 345-355. doi: 10.7524/j.issn.0254-6108.2017.02.2016061203
LIANG Shuang, HONG Song, TANG Zheng, WU Di, LI Xing, WANG Linpei, PENG Sha, LI Wanyi. Solubilization of chlorophenols by biosurfactant sodium cholate[J]. Environmental Chemistry, 2017, 36(2): 345-355. doi: 10.7524/j.issn.0254-6108.2017.02.2016061203
Citation: LIANG Shuang, HONG Song, TANG Zheng, WU Di, LI Xing, WANG Linpei, PENG Sha, LI Wanyi. Solubilization of chlorophenols by biosurfactant sodium cholate[J]. Environmental Chemistry, 2017, 36(2): 345-355. doi: 10.7524/j.issn.0254-6108.2017.02.2016061203

生物表面活性剂胆酸钠对氯酚的增溶

  • 1.  武汉大学资源与环境科学学院, 武汉, 430079;
  • 2.  武汉大学生物质资源化学与环境生物技术湖北省重点实验室, 武汉, 430079
基金项目:

教育部新世纪优秀人才支持计划(NCET-12-0429)和武汉市应用基础研究计划项目(201406010101010063)资助.

摘要: 胆酸钠是一种重要的生物表面活性剂,目前的研究主要集中在利胆药物研制方面,而有关其在增溶修复有机污染方面的应用研究较少.本文考察了胆酸钠(NaC)、脱氧胆酸钠(NaDC)、十二烷基硫酸钠(SDS)、曲拉通(TX-100)和十六烷基三甲基溴化铵(CTAB)对2,4,6-三氯苯酚(2,4,6-TCP)和2,4-二氯苯酚(2,4-DCP)的增溶作用,并探究了底物结构、温度和无机离子对NaC增溶氯酚的性能的影响.实验结果表明,当表面活性剂浓度大于临界胶束浓度(CMC)时,2,4,6-TCP和2,4-DCP的表观溶解度与表面活性剂浓度具有良好的线性关系.其中,相比于其它表面活性剂,当浓度高于0.05 mol·L-1时,NaC具有更良好的增溶性能.随苯环上氯原子个数从0增加到3,NaC的摩尔增溶比(MSR)值随氯酚疏水性(Kow)的增大而线性减小,NaC的胶束-水分配系数(Kmc)值则线性增大.在288-308 K的温度范围内,NaC增溶氯酚的性能逐渐增强.4种无机盐KCl、NaCl、Na2SO4、CaCl2对NaC增溶2,4,6-TCP和2,4-DCP的影响不同.随着无机盐浓度的升高,NaC增溶2,4,6-TCP的能力先上升后下降,而增溶2,4-DCP的能力则迅速下降.

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回