ZnO-NPs对反硝化同时甲烷化体系抑制作用的数学模拟

陈云, 石先阳. ZnO-NPs对反硝化同时甲烷化体系抑制作用的数学模拟[J]. 环境化学, 2016, 35(12): 2599-2605. doi: 10.7524/j.issn.0254-6108.2016.12.2016042606
引用本文: 陈云, 石先阳. ZnO-NPs对反硝化同时甲烷化体系抑制作用的数学模拟[J]. 环境化学, 2016, 35(12): 2599-2605. doi: 10.7524/j.issn.0254-6108.2016.12.2016042606
CHEN Yun, SHI Xianyang. Modeling the inhibitory effect of ZnO-NPs on simultaneous denitrification and methanation system[J]. Environmental Chemistry, 2016, 35(12): 2599-2605. doi: 10.7524/j.issn.0254-6108.2016.12.2016042606
Citation: CHEN Yun, SHI Xianyang. Modeling the inhibitory effect of ZnO-NPs on simultaneous denitrification and methanation system[J]. Environmental Chemistry, 2016, 35(12): 2599-2605. doi: 10.7524/j.issn.0254-6108.2016.12.2016042606

ZnO-NPs对反硝化同时甲烷化体系抑制作用的数学模拟

  • 基金项目:

    国家自然科学基金(51278001)资助.

Modeling the inhibitory effect of ZnO-NPs on simultaneous denitrification and methanation system

  • Fund Project: Supported by the National Natural Science Foundation of China (51278001).
  • 摘要: 通过建立反硝化同时甲烷化(SDM)扩展模型,动态模拟ZnO-NPs对酸化菌、产甲烷菌和反硝化菌的抑制作用.结果表明,该模型能较好地用于分析ZnO-NPs对SDM体系的抑制作用,主要表现为底物利用速率的抑制.在ZnO-NPs的抑制效应上产甲烷菌比反硝化菌更敏感.添加50、100、200 mg·L-1的ZnO-NPs使甲烷量分别降为对照的96.2%、79.9%、62.8%,但氮气产量未受影响.结合遗传算法和回归拟合,对生化过程底物利用速率和抑制性常数进行估计,得到:KI,NO2=0.00007KI,NO3=0.042;KI,ZnO,bu=0.094KI,ZnO,pro=0.10KI,ZnO,ac=4.45,证实了NO2-对产甲烷菌的抑制强于NO3-,ZnO-NPs对酸化菌的抑制强于产甲烷菌.
  • 加载中
  • [1] 邹彩琼,贾漫珂,黄应平,等.ZnO纳米从的制备及其光催化性能研究[J].环境化学,2012,31(6):830-836.

    ZOU C Q,JIA M K,HUANG Y P,et al.Preparation and photocatalytic activity of ZnO nanobushes[J].Environmental Chemistry,2012,31(6):830-836(in Chinese).

    [2] MAYNARD A D,AITKEN R J,BUTZ T,et al. Safe handling of nanotechnology[J].Nature,2006,444(7117):267-269.
    [3] NOWACK B,BUCHELI T D.Occurrence,behavior and effects of nanoparticles in the environment[J].Environmental Pollution,2007,150(1):5-22.
    [4] 陈安伟,曾光明,陈桂秋,等.金属纳米材料的生物毒性效应研究进展[J].环境化学,2014,33(4):568-575.

    CHEN A W,ZENG G M,CHEN G Q,et al.Advance in research on toxicity of metal nanomaterials[J].Environmental Chemistry,2014,33(4):568-575(in Chinese).

    [5] MORONES J R,ELECHIGUERRAJ L,CAMACHO A,et al.The bactericidal effect of silver nanoparticles[J].Nanotechnology,2005,16(10):2346-2353.
    [6] ZHENG X,WU R,CHEN Y G.Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal[J].Environmental Science&Technology,2011,45(7):2826-2832.
    [7] MU H,CHEN Y G,XIAO N D.Effects of metal oxide nanoparticles (TiO2,Al2O3,SiO2 and ZnO) on waste activated sludge anaerobic digestion[J].Bioresource Technology,2011,102(22):10305-10311.
    [8] 魏媛媛,郑雄,陈银广,等.工程纳米颗粒对污水生物处理影响的研究进展[J].微生物学通报,2014,41(5):916-923.

    WEI Y Y,ZHENG X,CHEN Y G,et al.Effect of engineered nanomaterials on biological wastewater treatment-A review[J].Microbiology China,2014,41(5):916-923(in Chinese).

    [9] OTERO-GONZALEZ L,FIELD J A,SIERRA-ALVAREZ R.Fate and long-term inhibitory impact of ZnO nanoparticles during high-rate anaerobic wastewater treatment[J].Journal of Environmental Management,2014,135:110-117.
    [10] MU H,ZHENG X,CHEN Y G,et al.Response of anaerobic granular sludge to a shock load of zinc oxide nanoparticles during biological wastewater treatment[J].Environmental Science&Technology,2012,46(11):5997-6003.
    [11] 张伟政,陈永春,石先阳,等.乙酸钠为电子供体时反硝化耦合甲烷化过程的数学模拟[J].环境工程,2014,9:63-69.ZHANG W Z,CHEN Y C,SHI X Y,et al.Mathematical simulation of simultaneous denitrification and methanogenesis with sodium acetate as the electron donor[J].Environmental Engineering,2014

    ,9:63-69(in Chinese).

    [12] 王树涛,李素萍,王未青,等.ZnO纳米颗粒对SBR活性污泥活性的影响[J].中国环境科学,2014,34(10):2575-2580.

    WANG S T,LI S P,WANG W Q,et al.Impact of ZnO nanoparticles on the activity of the activated sludge in SBR[J].China Environmental Science,2014,34(10):2575-2580(in Chinese).

    [13] 李晶,胡霞林,陈启晴,等.纳米材料对水生生物的生态毒理效应研究进展[J].环境化学,2011,30(12):1993-2002.

    LI J,HU,X L,CHEN Q Q,et al.Ecotoxicology of nanomaterials on aquatic organisms[J].Environmental Chemistry,2011,30(12):1993-2002(in Chinese).

    [14] 国家环境保护总局.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社,2002.The State Environmental Protection Administration.Water and wastewater monitoring analysis method[M].4th Version,Beijing:China Environmental Science Press,2002(in Chinese).
    [15] TUGTAS A E,TEZAL U,PAVLOSTATHIS S G.An extension of the anaerobic digestion model No.1 to include the effect of nitrate reduction processes[J].Water Science and Technology,2006,54(4):41-49.
    [16] KLUBER D H,CONRAD R.Inhibitory effects of nitrate,nitrite,NO,and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii[J].FEMS Microbiology Ecology,1998(a),25(4):331-339.
    [17] KLUBER D H,CONRAD R.Effects of nitrate,nitrite,NO,and N2O on methanogenesis and other redox processes in anoxic rice field soil[J].FEMS Microbiology Ecology,1998(b),25(3):301-318.
    [18] TUGTAS A E,TEZAL U,PAVLOSTATHIS S G.A comprehensive model of simultaneous denitrification and methanogenic fermentation processes[J].Biotechnology and Bioengineering,2010,105(1):98-108.
    [19] BATSTONE D J,KELLER J,ANGELIDAKI I,et al.The IWA anaerobic digestion model No 1(ADM1)[J].Water Science and Technology,2002,45(10):65-73.
  • 加载中
计量
  • 文章访问数:  718
  • HTML全文浏览数:  667
  • PDF下载数:  303
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-04-26
  • 刊出日期:  2016-12-15
陈云, 石先阳. ZnO-NPs对反硝化同时甲烷化体系抑制作用的数学模拟[J]. 环境化学, 2016, 35(12): 2599-2605. doi: 10.7524/j.issn.0254-6108.2016.12.2016042606
引用本文: 陈云, 石先阳. ZnO-NPs对反硝化同时甲烷化体系抑制作用的数学模拟[J]. 环境化学, 2016, 35(12): 2599-2605. doi: 10.7524/j.issn.0254-6108.2016.12.2016042606
CHEN Yun, SHI Xianyang. Modeling the inhibitory effect of ZnO-NPs on simultaneous denitrification and methanation system[J]. Environmental Chemistry, 2016, 35(12): 2599-2605. doi: 10.7524/j.issn.0254-6108.2016.12.2016042606
Citation: CHEN Yun, SHI Xianyang. Modeling the inhibitory effect of ZnO-NPs on simultaneous denitrification and methanation system[J]. Environmental Chemistry, 2016, 35(12): 2599-2605. doi: 10.7524/j.issn.0254-6108.2016.12.2016042606

ZnO-NPs对反硝化同时甲烷化体系抑制作用的数学模拟

  • 1. 安徽大学资源与环境工程学院, 合肥, 230039
基金项目:

国家自然科学基金(51278001)资助.

摘要: 通过建立反硝化同时甲烷化(SDM)扩展模型,动态模拟ZnO-NPs对酸化菌、产甲烷菌和反硝化菌的抑制作用.结果表明,该模型能较好地用于分析ZnO-NPs对SDM体系的抑制作用,主要表现为底物利用速率的抑制.在ZnO-NPs的抑制效应上产甲烷菌比反硝化菌更敏感.添加50、100、200 mg·L-1的ZnO-NPs使甲烷量分别降为对照的96.2%、79.9%、62.8%,但氮气产量未受影响.结合遗传算法和回归拟合,对生化过程底物利用速率和抑制性常数进行估计,得到:KI,NO2=0.00007KI,NO3=0.042;KI,ZnO,bu=0.094KI,ZnO,pro=0.10KI,ZnO,ac=4.45,证实了NO2-对产甲烷菌的抑制强于NO3-,ZnO-NPs对酸化菌的抑制强于产甲烷菌.

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回