水热法制备榴莲碳对水体中四环素的去除性能

徐奕, 孙宝瑞, 彭亮, 曾清如, 铁柏清, 雷鸣, 邵继海. 水热法制备榴莲碳对水体中四环素的去除性能[J]. 环境化学, 2016, 35(7): 1452-1460. doi: 10.7524/j.issn.0254-6108.2016.07.2016032001
引用本文: 徐奕, 孙宝瑞, 彭亮, 曾清如, 铁柏清, 雷鸣, 邵继海. 水热法制备榴莲碳对水体中四环素的去除性能[J]. 环境化学, 2016, 35(7): 1452-1460. doi: 10.7524/j.issn.0254-6108.2016.07.2016032001
XU Yi, SUN Baorui, PENG Liang, ZENG Qingru, TIE Boqing, LEI Ming, SHAO Jihai. Hydrothermal preparation of durian biochar and its application on removal of tetracycline from aqueous solution[J]. Environmental Chemistry, 2016, 35(7): 1452-1460. doi: 10.7524/j.issn.0254-6108.2016.07.2016032001
Citation: XU Yi, SUN Baorui, PENG Liang, ZENG Qingru, TIE Boqing, LEI Ming, SHAO Jihai. Hydrothermal preparation of durian biochar and its application on removal of tetracycline from aqueous solution[J]. Environmental Chemistry, 2016, 35(7): 1452-1460. doi: 10.7524/j.issn.0254-6108.2016.07.2016032001

水热法制备榴莲碳对水体中四环素的去除性能

  • 基金项目:

    湖南农业大学大学生创新实验项目(XCX14096),国家自然科学青年基金(41401260),湖南省自然科学基金(13JJ04068),湖南省科技厅重点项目(2015NK3015),湖南农业大学1515人才基金资助.

Hydrothermal preparation of durian biochar and its application on removal of tetracycline from aqueous solution

  • Fund Project: Supported by the Special Fund for Innovative Experimental Project of College Students(XCX14096), the National Natural Science Youth Foundation Project of China(41401260), Project of Natural Science Foundation of Hunan Province(13JJ04068), Key Project of Science and Technology Department of Hunan Province(2015NK3015), Hunan Agricultural University 1515 talent fund.
  • 摘要: 本文利用榴莲壳和氯化高铁水热法制备具有磁性的榴莲碳,利用XRD、FTIR和SEM对榴莲碳进行结构表征,并研究榴莲碳对水体中四环素的吸附性能,以及水热反应温度、溶液pH和盐浓度等对榴莲碳吸附去除四环素性能的影响.结果表明,在水热温度170℃加热10 h条件下制备的榴莲碳D170具有明显的纳米片状和颗粒状结构,随着温度的升高,制备的榴莲碳XRD衍射峰增强,形成的结晶更好.吸附实验表明,随着水热制备温度的升高,制备的榴莲碳对四环素的吸附去除率呈降低趋势.榴莲碳对四环素的吸附热力学模型拟合表明:D170、D180和D200对水体中四环素的最大吸附容量分别为153.97 mg·g-1、80.26 mg·g-1和34.14 mg·g-1,其中D170对四环素的吸附效果最好,最佳吸附溶液pH值约为6.0,吸附热力学过程符合Freundich模型,吸附动力学过程符合假二级动力学模型.溶液中添加NaCl能促进榴莲碳对四环素的吸附作用,当NaCl浓度高于0.1 mol·L-1,榴莲碳对四环素的去除率达到100%;而添加Ca(NO3)2可降低榴莲碳对四环素的吸附能力,当Ca(NO3)2浓度从0.1 mol·L-1增加到1.0 mol·L-1时,水溶液中四环素的去除率从93%降低到78%.
  • 加载中
  • [1] STORTEBOOM H, ARABI M, DAVIS J G, et al. Tracking antibiotic resistance genes in the South Platte River basin using molecular signatures of urban, agricultural, and pristine sources[J]. Environ Sci & Technol, 2010, 44:7397-7404.
    [2] 鲍艳宇. 四环素类抗生素在土壤中的环境行为及生态毒理研究[D]. 天津:南开大学学位论文, 2008. BAO Y Y. Environmental behavior and eco-toxicity oftetracycline antibiotics in soils[D]. Tianjin:Nankai university, 2008(in Chinese).
    [3] MIAO X S, BISHAY F, CHEN M, et al. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada[J]. Environ Sci Technol, 2004, 38:3533-3541.
    [4] 章强,辛琦, 朱静敏,等. 中国主要水域抗生素污染现状及其生态环境效应研究进展[J]. 环境化学, 2014, 33(7):1075-1083.

    ZHANG Q, XIN Q, ZHU J M, et al. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts[J]. Environmental Chemistry, 2014, 33(7):1075-1083(in Chinese).

    [5] SCHMITT H, STOOB K, HAMSCHER G, et al. Tetracyclines and tetracycline resistance in agricultural soils:M icrocosm and field studies[J]. Microb. Ecol., 2006, 51:267-276.
    [6] 贺德春, 吴根义, 许振成,等. 小白菜和白萝卜对四环素类抗生素的吸收累积特征[J]. 农业环境科学学报, 2014, 33(6):1095-1099.

    HE D C, WU G Y, XU Z C, et al. Uptake of selected tetracycline antibiotics by pakchoi and radish from manure-amended soils[J]. Journal of Agro-environmental Science, 2014, 33(6):1095-1099(in Chinese).

    [7] FIGUEROA R A, LEONARD A, MACKAY A A. Modeling tetracycline antibiotic sorption to clays[J]. Environ Sci Technol, 2004, 38:476-483.
    [8] 邓丽萍, 纪靓靓, 白朝暾. 二氧化锰改性碳纳米管对四环素和泰乐菌素的吸附[J]. 农业环境科学学报, 2015, (4):781-786. DENG L P, JI L L, BAI Z T. Adsorption of tetracycline and tylosin on MnO coated carbon nanotubes[J]. Journal of Agro-environmental Science, 2015

    , 34(4):781-786(in Chinese).

    [9] YUAN G, YAN L, LIANG Z, et al. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide[J]. Journal of Colloid & Interface Science, 2012, 368(1):540-546.
    [10] LALHRIATPUIA C, TIWARI D A, et al. Immobilized nanopillars-TiO2 in the efficient removal of micro-pollutants from aqueous solutions: Physico-chemical studies[J]. Chemical Engineering Journal, 2015, 281:782-792.
    [11] THIO C, MIMA M, SUDARYANTO Y, et al. Adsorption of basic dye onto activated carbon prepared from durianshell:Studies of adsorption equilibrium and kinetics[J]. Chemical Engineering Journal, 2007, 127(1-3):121-129.
    [12] CHANDRA T C, MIRNA M M, SUMARSO J, et al. Activated carbon from durian shell:Preparation and character-ization[J]. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(4):457-462.
    [13] THAM Y J, LATIF P A, ABDULLAH A M, et al. Performances of toluene removal by activated carbon derivedfrom durian shell[J]. Bioresource Technology, 2011, 102(2):724-728.
    [14] LIANG P, YAN Q R, JI D G, et al. Iron improving biochar derived from microalgae on removal of tetracycline from aqueous system[J]. Environmental Science & Pollution Research, 2014, 21(12):7631-7640.
    [15] TITIRICI M M, ANTONIETTI M, Baccile N. Hydrothermal carbon from biomass:A comparison of the local structure from polyto-monosaccharides and pentoses/hexoses[J]. Green Chemistry, 2008, 10:1204-1212.
    [16] THINES K R, ABDULLAH E C, RUTHIRAAN M, et al. Production of magnetic biochar derived from durian's rind at vacuum condition for removal of methylene blue pigments from aqueous solution[J]. International Journal of Chemical Engineering, 2015, 2:13-17.
    [17] CHEN B, CHEN Z, LV S. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate[J]. Bioresour Technology, 2011a, 102:716-723
    [18] PRAKONGKEP N, GILKES R J, WIRIYAKITNATEEKUL W. Forms and solubility of plant nutrient elements in tropical plant waste biochars[J]. Journal of Plant Nutrition & Soil Science, 2015, 178(5):732-740.
    [19] TITIRICI M M, ANTONIETTI M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization[J]. Chemical Society Reviews, 2010, 39:103-116.
    [20] FALCO C, SEVILLA M, WHITE R J, et al. Renewable nitrogen-doped hydrothermal carbons derived from microalgae[J]. Chemsuschem, 2012, 5(9):1834-1840.
    [21] KANG J, LIU H J, ZHENG Y M, et al. Systematic study of synergistic and antagonistic effects on adsorption of tetracycline and copper onto a chitosan[J]. Journal of Colloid & Interface Science, 2010, 344:117-125.
    [22] LI Z H, SCHULZ L, ACKLEY C, et al. Adsorption of tetracycline on kaolinite with pH-dependent surface charges[J]. Journal of Colloid & Interface Science, 2010, 351:254-260.
    [23] SITHOLE B B, GUY R D. Models for tetracycline environments[J]. Water Air & Soil Pollution, 1987, 32:303-314.
    [24] ZHU X, LIU Y, FENG Q, et al. Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal[J]. Bioresource Technology, 2014, 154(2):209-214.
    [25] LIU P, LIU W J, JIANG H, et al. Modification of biochar derived fromfast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution[J]. Bioresour Technology, 2012, 121:235-240.
    [26] MARTINS A C, PEZOTI O, CAZETTA A L, et al. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells:Kinetic and equilibrium studies[J]. Chemical Engineering Journal, 2015, 260:291-299.
    [27] 陈建,王京平,张根成. 四环素在活性炭上的吸附行为及机理[J]. 环境工程学报,2012, 6(12):4493-4496.

    CHEN J,WANG J P,ZHANG G C. Performance and mechanism of adsorption of tetracycline on activated carbons[J]. Chinese Journal of Environmental Engineering, 2012, 6(2):4493-4496(in Chinese).

    [28] 陈华, 任晓惠, 罗汉金. 改性纳米零价铁的制备及其去除水中的四环素[J]. 环境工程学报,2011, 5(4):767-771.

    CHEN H, REN X H, LUO H J, et al. Preparation of modified nanoscale zero-valent iron particles and its application in removal of tetracycline from wastewater[J]. Chinese Journal of Environmental Engineering, 2011, 5(4):767-771(in Chinese).

    [29] TONGAREE S, D. FLANAGAN. The interaction between oxytetracycline and divalent metal ions in aqueous and mixed solvent systems[J].Pharmaceutical Development and Technology, 1999, 4(4):581-591.
    [30] ARIAS M M, GARCíA-FALCÓN. Binding constants of oxytetracycline to animal feed divalent cations[J].Journal of Food Engineering,2007,78(1):69-73.
    [31] MORENO-CASTILLA C.Adsorption of organic molecules fromaqueous solutions on carbon materials[J].Carbon,2004,42(1):83-94.
    [32] JEAN-MARIE S. Modeling the effects of Ca2+ and clay-associated organic carbon on the stability of colloids from topsoils[J]. Journal of Colloid & Interface Science, 2010, 343(2):408-414.
  • 加载中
计量
  • 文章访问数:  1300
  • HTML全文浏览数:  1246
  • PDF下载数:  389
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-03-20
  • 刊出日期:  2016-07-15
徐奕, 孙宝瑞, 彭亮, 曾清如, 铁柏清, 雷鸣, 邵继海. 水热法制备榴莲碳对水体中四环素的去除性能[J]. 环境化学, 2016, 35(7): 1452-1460. doi: 10.7524/j.issn.0254-6108.2016.07.2016032001
引用本文: 徐奕, 孙宝瑞, 彭亮, 曾清如, 铁柏清, 雷鸣, 邵继海. 水热法制备榴莲碳对水体中四环素的去除性能[J]. 环境化学, 2016, 35(7): 1452-1460. doi: 10.7524/j.issn.0254-6108.2016.07.2016032001
XU Yi, SUN Baorui, PENG Liang, ZENG Qingru, TIE Boqing, LEI Ming, SHAO Jihai. Hydrothermal preparation of durian biochar and its application on removal of tetracycline from aqueous solution[J]. Environmental Chemistry, 2016, 35(7): 1452-1460. doi: 10.7524/j.issn.0254-6108.2016.07.2016032001
Citation: XU Yi, SUN Baorui, PENG Liang, ZENG Qingru, TIE Boqing, LEI Ming, SHAO Jihai. Hydrothermal preparation of durian biochar and its application on removal of tetracycline from aqueous solution[J]. Environmental Chemistry, 2016, 35(7): 1452-1460. doi: 10.7524/j.issn.0254-6108.2016.07.2016032001

水热法制备榴莲碳对水体中四环素的去除性能

  • 1. 湖南农业大学资源环境学院, 长沙, 410128
基金项目:

湖南农业大学大学生创新实验项目(XCX14096),国家自然科学青年基金(41401260),湖南省自然科学基金(13JJ04068),湖南省科技厅重点项目(2015NK3015),湖南农业大学1515人才基金资助.

摘要: 本文利用榴莲壳和氯化高铁水热法制备具有磁性的榴莲碳,利用XRD、FTIR和SEM对榴莲碳进行结构表征,并研究榴莲碳对水体中四环素的吸附性能,以及水热反应温度、溶液pH和盐浓度等对榴莲碳吸附去除四环素性能的影响.结果表明,在水热温度170℃加热10 h条件下制备的榴莲碳D170具有明显的纳米片状和颗粒状结构,随着温度的升高,制备的榴莲碳XRD衍射峰增强,形成的结晶更好.吸附实验表明,随着水热制备温度的升高,制备的榴莲碳对四环素的吸附去除率呈降低趋势.榴莲碳对四环素的吸附热力学模型拟合表明:D170、D180和D200对水体中四环素的最大吸附容量分别为153.97 mg·g-1、80.26 mg·g-1和34.14 mg·g-1,其中D170对四环素的吸附效果最好,最佳吸附溶液pH值约为6.0,吸附热力学过程符合Freundich模型,吸附动力学过程符合假二级动力学模型.溶液中添加NaCl能促进榴莲碳对四环素的吸附作用,当NaCl浓度高于0.1 mol·L-1,榴莲碳对四环素的去除率达到100%;而添加Ca(NO3)2可降低榴莲碳对四环素的吸附能力,当Ca(NO3)2浓度从0.1 mol·L-1增加到1.0 mol·L-1时,水溶液中四环素的去除率从93%降低到78%.

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回