TiO2纳米管电极光电催化降解四环素
Photocatalytic degradation of tetracycline by TiO2 nanotubes electrode
-
摘要: 采用电化学阳极氧化的方法,分别以HF酸水溶液和含NH4F的丙三醇溶液为电解液,制备出高度有序的TiO2纳米管电极.扫描电镜结果表明,TiO2纳米管生长形貌良好,其中有机电解质溶液中制备的TiO2纳米管管长为3 μm,而水溶液中制备的TiO2纳米管长度仅为300 nm.TiO2纳米管电极经450℃热处理后,表现出明显的锐钛型结构.两种TiO2纳米管电极均具有较好的光电催化活性,在偏压为4 V时,光电流分别为1.37 mA·cm-2和 0.83 mA·cm-2,其中管长3μm电极在180 min内对50 mg·L-1四环素TOC的去除效果约为93%.该电极具有较高的稳定性,重复使用5次,光电催化过程对四环素废水均具有较高的降解效果.在180 min内,四环素的降解率均保持在92%±1%,可重复使用.Abstract: By means of anodic oxidation, highly ordered TiO2 nanotube array electrodes were prepared in the electrolytes, respectively with HF acid solution and NH4F glycerol solution. Scanning electron microscopy (SEM) results showed that TiO2 nanotube arrays were of uniform morphology. The length of TiO2 nanotube arrays prepared in organic electrolyte was 3 μm, while the length prepared in aqueous solution was 300 nm. XRD patterns showed obvious peaks of anatase after heat treating at 450℃. TiO2 nanotube array electrodes also had good photoelectrocatalytic activities. At a bias potential of 4 V, the photocurrents were 1.37 mA·cm-2 and 0.83 mA·cm-2, respectively. By using the 3 μm electrode, the removal efficiency of 50 mg·L-1 tetracycline reached 93% within 180 min. The electrodes were highly stable after 5 repeated tests, and the degraclation rate of tetracycline was 92%±1%.
-
Key words:
- TiO2 nanotube array electrode /
- photoelectrocatalysis /
- tetracycline /
- stability
-
-
[1] BILA D M, DEZOTTI M. Fármacos no meio ambiente[J]. Química Nova, 2003, 26(4):523-530. [2] TEMES T, BONERZ M, SCHMIDT T. Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2001, 938(1):175-185. [3] HARTIG C, STORM T, JEKEL M. Detection and identification of sulphonamide drugs in municipal waste water by liquid chromatography coupled with electrospray ionisation tandem mass spectrometry[J]. Journal of Chromatography A, 1999, 854(1):163-173. [4] PETROVIC M, GONZALEZ S, BARCELO D. Analysis and removal of emerging contaminants in wastewater and drinking water[J]. TrAC Trends in Analytical Chemistry, 2003, 22(10):685-696. [5] BALCIOGLU I A, ÖTKER M. Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes[J]. Chemosphere, 2003, 50(1):85-95. [6] HALLING S B, RENSEN, NIELSEN S N, et al. Occurrence, fate and effects of pharmaceutical substances in the environment:A review[J]. Chemosphere, 1998, 36:357-393. [7] 章强, 辛琦, 朱静敏, 等. 中国主要水域抗生素污染现状及其生态环境效应研究进展[J]. 环境化学,2014,33(7):1075-1083. ZHANG Q, XIN Q, ZHU J M, et al. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts[J]. Environmental Chemistry, 2014,33(7):1075-1083(in Chinese).
[8] 张昱, 杨敏, 王春艳, 等. 生产过程中抗生素与抗药基因的排放特征、环境行为及控制[J]. 环境化学, 2015, 34(1):1-8. ZHANG Y,YANG M, WANG C Y, et al. Antibiotics, antibiotic resistance genes, pollutant discharge characteristics, horizontal transfer mechanism, pollution control technology[J]. Environmental Chemistry, 2015, 34(1):1-8(in Chinese).
[9] KUMMERER K, AL-AHMADA, MERSCH-SUNDERMANN V. Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test[J]. Chemosphere, 2000, 40(7):701-710. [10] KUMMERER K, AL-AHMADA, BERTRAM B, et al. Biodegradability of antineoplastic compounds in screening tests:Influence of glucosidation and of stereochemistry[J]. Chemosphere, 2000, 40(7):767-773. [11] ADAMS C, WANG Y, LOFTIN K,et al. Removal of antibiotics from surface and distilled water in conventional water treatment processes[J]. Journal of environmental engineering, 2002, 128(3):253-260. [12] 张娟娟,窦远明,李静,等. Bi2MoO6薄膜电极光电催化氧化处理氰化物的研究[J]. 环境科学学报,2015,35(3):738-744. ZHANG J J, DOU Y M, LI J, et al. Photoelectrocatalytic oxidation of cyanides at Bi2MoO6 film electrode[J]. Acta Scientiae Circumstantiae, 2015,35(3):738-744(in Chinese).
[13] 李迪,李雪瑾,殷伟平,等. 难降解有机污染物与葡萄糖的光电催化协同氧化作用[J]. 环境化学, 2013, 32(1):36-41. LI D, LI X J, YIN W, et al. The synergistic photoelectrocatalytic oxidation between refractory organic and glucose on TNA electrode[J]. Environmental Chemistry, 2013, 32(1):36-41(in Chinese).
[14] GHODBANE H, HAMDAOUI O, VANDAMME J,et al. Degradation of AB25 dye in liquid medium by atmospheric pressure non-thermal plasma and plasma combination with photocatalyst TiO2[J]. Open Chemistry, 2015, 13(1). [15] YUZER B, GUIDA M, CINER F,et al. A multifaceted aggregation and toxicity assessment study of sol-gel-based TiO2 nanoparticles during textile wastewater treatment[J]. Desalination and Water Treatment, 2015(ahead-of-print):1-8. [16] 夏璐, 鲁栋梁, 陆园叶. 光电协同催化降解2-氯-4-甲氧基苯酚[J]. 环境化学,2009, 28(4):483-486. XIA L, LU D L, LU Y Y. Study on Photoelectrocatalytic degradation of 2-chloro-4-methoxyphenol[J]. Environmental Chemistry, 2009, 28(4):483-486(in Chinese).
[17] 陈汉林,敖日其冷,陈梓烽,等. 利用碳氮共掺杂二氧化钛纳米管实现同时降解甲基橙和产氢[J]. 环境科学学报,2015,35(9):2790-2797. CHEN H L, AO R Q L,CHEN Z F, et al. Concurrent photoelectrochemical reduction of H2O2 and oxidation of methylorange (MO) using carbon and nitrogen codoped TiO2 nanotube arrays (C,N-TNAs)[J]. Acta Scientiae Circumstantiae, 2015,35(9):2790-2797(in Chinese).
[18] BAUER S, KLEBER S, SCHMUKI P. TiO2 nanotubes:Tailoring the geometry in H3PO4/HF electrolytes[J]. Electrochemistry Communications, 2006, 8(8):1321-1325. [19] MOR G, VARGHESE O K, PAULOSE M, et al. Fabrication of tapered, conical-shaped titania nanotubes[J]. Journal of Materials Research, 2003, 18(11):2588-2593. [20] XIAO S, QU J, ZHAO X,et al. Electrochemical process combined with UV light irradiation for synergistic degradation of ammonia in chloride-containing solutions[J]. Water Research, 2009, 43(5):1432-1440. [21] BICKLEY R I, VISHWANATHAN V. Photocatalytically induced fixation of molecular nitrogen by near UV radiation[J]. Nature, 1979, 280(5720):306-308. [22] 张国芳, 肖书虎, 肖宏康, 等. 黄连素制药废水的电化学预处理试验[J]. 环境科学研究, 2011, 24(1):79-84. ZHANG G F, XIAO S H, XIAO H K, et al. Advances in research of berberine hydrochloride wastewater treatment technologies[J]. Research of Environmental Sciences, 2011, 24(1):79-84(in Chinese).
-

计量
- 文章访问数: 1063
- HTML全文浏览数: 1005
- PDF下载数: 488
- 施引文献: 0