典型锂离子电池材料的足迹家族分析

弓原, 郁亚娟, 黄凯, 王雨琪. 典型锂离子电池材料的足迹家族分析[J]. 环境化学, 2016, 35(6): 1103-1108. doi: 10.7524/j.issn.0254-6108.2016.06.2015092802
引用本文: 弓原, 郁亚娟, 黄凯, 王雨琪. 典型锂离子电池材料的足迹家族分析[J]. 环境化学, 2016, 35(6): 1103-1108. doi: 10.7524/j.issn.0254-6108.2016.06.2015092802
GONG Yuan, YU Yajuan, HUANG Kai, WANG Yuqi. Footprint family analysis of typical lithium-ion battery materials[J]. Environmental Chemistry, 2016, 35(6): 1103-1108. doi: 10.7524/j.issn.0254-6108.2016.06.2015092802
Citation: GONG Yuan, YU Yajuan, HUANG Kai, WANG Yuqi. Footprint family analysis of typical lithium-ion battery materials[J]. Environmental Chemistry, 2016, 35(6): 1103-1108. doi: 10.7524/j.issn.0254-6108.2016.06.2015092802

典型锂离子电池材料的足迹家族分析

  • 基金项目:

    国家自然科学基金(51474033,41301636)和国家科技支撑计划(2012BAD15B05)资助.

Footprint family analysis of typical lithium-ion battery materials

  • Fund Project: Supported by the National Natural Science Foundation of China (51474033, 41301636)and National Key Technology R&D Program(2012BAD15B05).
  • 摘要: 本研究引入了国际上新兴的足迹家族概念,建立了基于生命周期评价法的锂离子电池材料足迹家族评价方法体系.在此方法框架内,分别计算3种锂离子电池:LiFePO4/C、LiFe0.98Mn0.02PO4/C和FeF3(H2O)3/C的碳足迹、水足迹和生态足迹,综合比较分析他们的足迹大小,由此讨论其环境影响,总结出足迹类指标评价锂离子电池材料的方法,并评估其适用性.对3种锂离子电池进行的足迹家族分析,得到下列结果:在同样合成1 kg电池正极材料的前提下,LiFe0.98Mn0.02PO4/C的碳、水、生态足迹数值均为最大(对应足迹值分别为13.020 kg CO2eq、23.865 m3、38.432 m2a),产生的环境影响也最大;FeF3(H2O)3/C的碳、水、生态足迹数值均为最小(对应足迹值分别为8.712 kg CO2eq、16.308 m3、26.317 m2a),产生的环境影响也最小.
  • 加载中
  • [1] 吴锋.绿色二次电池材料的研究进展[J]. 中国材料进展,2009,28(7/8):41

    -49. WU F. Progress in R&D of second battery materials[J]. Materials China, 2009, 28(7-8):41-49(in Chinese).

    [2] 郁亚娟, 陈妍.典型二次电池生命周期评价[J]. 环境污染与防治,2010,32(7):15-23.

    YU Y J, CHEN Y. Life cycle assessment of typical secondary batteries[J]. Environmental Pollution and Control, 2010, 32(7):15-23(in Chinese).

    [3] FANG K, HEIJUNGS R, DE SNOO G. Overview of a footprint family[J]. Ecological Indicators, 2014, 36(1):508-518.
    [4] 黄带弟, 夏定国.生命周期评价方法在氧化钴生产中的应用[J]. 环境科学与技术,2007,30(7):56-58.

    HUANG D D, XIA D G. Application of life cycle assessment in cobalt oxide production[J]. Environment Science and Technology, 2007,30(7):56-58(in Chinese).

    [5] 方恺.基于足迹家族和行星边界的主要国家环境可持续性多维评价[J]. 生态环境学报,2014,23(11):1868-1875.

    FANG K. Multidimensional assessment of national environmental sustainability based on footprint family and planetary boundaries[J]. Ecology and Environmental Sciences, 2014,23(11):1868-1875.

    [6] EHRLICH P R. Human carrying capacity, extinction, and nature reserves[J]. Bioscience, 1982, 32(5):331-333.
    [7] WIEDMANN T, MINX J. A definition of ‘carbon footprint'[R]. UK:ISA Research Report, 2007.
    [8] HOEKSYRA A Y, HUNG P Q. Virtual water trade:A quantification of virtual water flows between nations in relation to international crop trade[J]. Value of Water Research Report Series,2002,11(2):121-125.
    [9] BORUCKE M, MOORE D, CRANSTON G. Accounting for demand and supply of the biosphere's regenerative capacity:The National Footprint Accounts'underlying methodology and framework[J]. Ecological Indicators, 2013, 24(2):518-533.
    [10] QIN S P, HU C S, ZHANG Y M. Advances in nitrogen footprint research[J]. Chinese Journal of Eco-Agriculture,2011,19(2):462-467.
    [11] SMITH G, MCMASTERS J, PENDLINGTON D. Agri-biodiversity indicators:A view from unilever sustainable agriculture initiative//Agriculture and biodiversity:Developing indicators for policy analysis[M]. Zurich:Organisation for Economic Co-operation and Development, 2001.
    [12] 段宁, 程胜高.生命周期评价方法体系及其对比分析[J]. 安徽农业科学, 2008, 36(32):13923-13925.

    DUAN N, CHENG S G. Outline and contrast analysis of life cycle assessment methodologies[J]. Journal of AnHui Agricultural Sciences, 2008, 36(32):13923-13925(in Chinese).

    [13] 梁雨晗, 郁亚娟.锂离子电池常用有机液体电解质中有机溶剂的生命周期评价[J]. 环境化学, 2013, 32(7):1283-1287.

    LIANG Y H, YU Y J. The life cycle assessment of organic solvent in commonly used organic liquid electrolyte of Lithium ion batteries[J]. Environmental Chemistry, 2013, 32(7):1283-1287(in Chinese).

    [14] ISO 14040 Environmental Assessment, Life Cycle Assessment-Principles and framework, International Organization for Standardisation, Brussels, 1997.
    [15] Mohammad ali alanbari, hind qasim alazzawi. Application of SimaPro7 on Al-Hilla City sewerage Network, Iraq[J]. Engineering,2015,7(5):224-229.
  • 加载中
计量
  • 文章访问数:  1070
  • HTML全文浏览数:  974
  • PDF下载数:  619
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-09-28
  • 刊出日期:  2016-06-15
弓原, 郁亚娟, 黄凯, 王雨琪. 典型锂离子电池材料的足迹家族分析[J]. 环境化学, 2016, 35(6): 1103-1108. doi: 10.7524/j.issn.0254-6108.2016.06.2015092802
引用本文: 弓原, 郁亚娟, 黄凯, 王雨琪. 典型锂离子电池材料的足迹家族分析[J]. 环境化学, 2016, 35(6): 1103-1108. doi: 10.7524/j.issn.0254-6108.2016.06.2015092802
GONG Yuan, YU Yajuan, HUANG Kai, WANG Yuqi. Footprint family analysis of typical lithium-ion battery materials[J]. Environmental Chemistry, 2016, 35(6): 1103-1108. doi: 10.7524/j.issn.0254-6108.2016.06.2015092802
Citation: GONG Yuan, YU Yajuan, HUANG Kai, WANG Yuqi. Footprint family analysis of typical lithium-ion battery materials[J]. Environmental Chemistry, 2016, 35(6): 1103-1108. doi: 10.7524/j.issn.0254-6108.2016.06.2015092802

典型锂离子电池材料的足迹家族分析

  • 1.  北京理工大学材料学院, 北京, 100081;
  • 2.  北京林业大学环境科学与工程学院, 北京, 100083
基金项目:

国家自然科学基金(51474033,41301636)和国家科技支撑计划(2012BAD15B05)资助.

摘要: 本研究引入了国际上新兴的足迹家族概念,建立了基于生命周期评价法的锂离子电池材料足迹家族评价方法体系.在此方法框架内,分别计算3种锂离子电池:LiFePO4/C、LiFe0.98Mn0.02PO4/C和FeF3(H2O)3/C的碳足迹、水足迹和生态足迹,综合比较分析他们的足迹大小,由此讨论其环境影响,总结出足迹类指标评价锂离子电池材料的方法,并评估其适用性.对3种锂离子电池进行的足迹家族分析,得到下列结果:在同样合成1 kg电池正极材料的前提下,LiFe0.98Mn0.02PO4/C的碳、水、生态足迹数值均为最大(对应足迹值分别为13.020 kg CO2eq、23.865 m3、38.432 m2a),产生的环境影响也最大;FeF3(H2O)3/C的碳、水、生态足迹数值均为最小(对应足迹值分别为8.712 kg CO2eq、16.308 m3、26.317 m2a),产生的环境影响也最小.

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回