典型锂离子电池材料的足迹家族分析
Footprint family analysis of typical lithium-ion battery materials
-
摘要: 本研究引入了国际上新兴的足迹家族概念,建立了基于生命周期评价法的锂离子电池材料足迹家族评价方法体系.在此方法框架内,分别计算3种锂离子电池:LiFePO4/C、LiFe0.98Mn0.02PO4/C和FeF3(H2O)3/C的碳足迹、水足迹和生态足迹,综合比较分析他们的足迹大小,由此讨论其环境影响,总结出足迹类指标评价锂离子电池材料的方法,并评估其适用性.对3种锂离子电池进行的足迹家族分析,得到下列结果:在同样合成1 kg电池正极材料的前提下,LiFe0.98Mn0.02PO4/C的碳、水、生态足迹数值均为最大(对应足迹值分别为13.020 kg CO2eq、23.865 m3、38.432 m2a),产生的环境影响也最大;FeF3(H2O)3/C的碳、水、生态足迹数值均为最小(对应足迹值分别为8.712 kg CO2eq、16.308 m3、26.317 m2a),产生的环境影响也最小.Abstract: In recent years, lithium-ion batteries as new products in the field of battery have been widely researched and used with its outstanding advantages. Faced with the growing environmental problems, without reducing its battery performance of the premise, to ensure its strict environmental friendliness has become an important issue. In this paper, based on the Life Cycle Assessment (LCA) method, we built a framework to calculate the ‘footprint family’ of Li-ion battery materials. Through the method, we calculated the values of carbon footprint, water footprint and ecological footprint of three lithium-ion batteries, which called LiFePO4/C, LiFe0.98Mn0.02PO4/C and FeF3(H2O)3/C. We compared and analyzed their numerical size and environmental impact, summarized the evaluation method for lithium-ion batteries by footprint indicators and constructed the evaluation system. The results for three batteries ‘footprint family’ are as follows:(1) Under the same premise of combining 1 kg battery cathode materials, carbon, water and ecological footprint of the LiFe0.98Mn0.02PO4/C battery is maximum and it has the greatest environmental impacts (The corresponding footprint values are 13.020 kg CO2eq, 23.865 m3, and 38.432 m2·a); (2)The FeF3(H2O)3/C battery is just the opposite (The corresponding footprint values are 8.712 kg CO2eq, 16.308 m3, 26.317 m2·a).
-
Key words:
- footprint family /
- lithium-ion battery /
- footprint /
- life cycle assessment
-
[1] 吴锋.绿色二次电池材料的研究进展[J]. 中国材料进展,2009,28(7/8):41 -49. WU F. Progress in R&D of second battery materials[J]. Materials China, 2009, 28(7-8):41-49(in Chinese).
[2] 郁亚娟, 陈妍.典型二次电池生命周期评价[J]. 环境污染与防治,2010,32(7):15-23. YU Y J, CHEN Y. Life cycle assessment of typical secondary batteries[J]. Environmental Pollution and Control, 2010, 32(7):15-23(in Chinese).
[3] FANG K, HEIJUNGS R, DE SNOO G. Overview of a footprint family[J]. Ecological Indicators, 2014, 36(1):508-518. [4] 黄带弟, 夏定国.生命周期评价方法在氧化钴生产中的应用[J]. 环境科学与技术,2007,30(7):56-58. HUANG D D, XIA D G. Application of life cycle assessment in cobalt oxide production[J]. Environment Science and Technology, 2007,30(7):56-58(in Chinese).
[5] 方恺.基于足迹家族和行星边界的主要国家环境可持续性多维评价[J]. 生态环境学报,2014,23(11):1868-1875. FANG K. Multidimensional assessment of national environmental sustainability based on footprint family and planetary boundaries[J]. Ecology and Environmental Sciences, 2014,23(11):1868-1875.
[6] EHRLICH P R. Human carrying capacity, extinction, and nature reserves[J]. Bioscience, 1982, 32(5):331-333. [7] WIEDMANN T, MINX J. A definition of ‘carbon footprint'[R]. UK:ISA Research Report, 2007. [8] HOEKSYRA A Y, HUNG P Q. Virtual water trade:A quantification of virtual water flows between nations in relation to international crop trade[J]. Value of Water Research Report Series,2002,11(2):121-125. [9] BORUCKE M, MOORE D, CRANSTON G. Accounting for demand and supply of the biosphere's regenerative capacity:The National Footprint Accounts'underlying methodology and framework[J]. Ecological Indicators, 2013, 24(2):518-533. [10] QIN S P, HU C S, ZHANG Y M. Advances in nitrogen footprint research[J]. Chinese Journal of Eco-Agriculture,2011,19(2):462-467. [11] SMITH G, MCMASTERS J, PENDLINGTON D. Agri-biodiversity indicators:A view from unilever sustainable agriculture initiative//Agriculture and biodiversity:Developing indicators for policy analysis[M]. Zurich:Organisation for Economic Co-operation and Development, 2001. [12] 段宁, 程胜高.生命周期评价方法体系及其对比分析[J]. 安徽农业科学, 2008, 36(32):13923-13925. DUAN N, CHENG S G. Outline and contrast analysis of life cycle assessment methodologies[J]. Journal of AnHui Agricultural Sciences, 2008, 36(32):13923-13925(in Chinese).
[13] 梁雨晗, 郁亚娟.锂离子电池常用有机液体电解质中有机溶剂的生命周期评价[J]. 环境化学, 2013, 32(7):1283-1287. LIANG Y H, YU Y J. The life cycle assessment of organic solvent in commonly used organic liquid electrolyte of Lithium ion batteries[J]. Environmental Chemistry, 2013, 32(7):1283-1287(in Chinese).
[14] ISO 14040 Environmental Assessment, Life Cycle Assessment-Principles and framework, International Organization for Standardisation, Brussels, 1997. [15] Mohammad ali alanbari, hind qasim alazzawi. Application of SimaPro7 on Al-Hilla City sewerage Network, Iraq[J]. Engineering,2015,7(5):224-229.
计量
- 文章访问数: 1070
- HTML全文浏览数: 974
- PDF下载数: 619
- 施引文献: 0